

Measuring Importance of Seeding for Structural De-anonymization Attacks in Social Networks

Gábor György Gulyás*,** and Sándor Imre**

*Laboratory of Cryptography and System Security (CrySyS)

**Mobile Communications and Quantum Technologies Laboratory
Budapest University of Technology and Economics
gulyas@crysys.hu

Outline and contributions

can achieve large-scale de-anonymization

We analyze the init phase:

- compare several methods
- apsects wrt. network size, structure
- importance of seed node roles
- other interesting properties

Re-identification in social networks

Auxiliary information, G_{src} (a public crawl, e.g., Flickr)

Anonimized graph, G_{tar} (anonimized export, e.g., Twitter)

Re-identification in social networks (2)

Auxiliary information, G_{src} (a public crawl, e.g., Flickr)

Anonimized graph, G_{tar} (anonimized export, e.g., Twitter)

Re-identification in social networks (3)

1. Seed identification

- Kind of "initalization"
- Global identification

2. Propagation

- Starts from seed set
- Local identification

Interesting properties of seeding in the literature

- Narayanan & Shmatikov, 2009
- Phase transition property, boundaries depend on:
 - Network structure
 - Seeding method
- Probability of propagation
 - Probability of wider propagation

(our measurements)

Seeding in the literature

- Narayanan & Shmatikov, 2009:
 - Nodes of 4-cliques
 - High degree (min. 80)
- Narayanan et al., 2011
 - Top nodes by degree

spoiler alert

Our measurements verify that, interestingly, these are quite good choices. However, this is not emphasized in the papers.

Seeding in the literature (2)

- Srivatsa & Hicks,2012
 - De-anonymizing mobility traces by using social networks
 - Betweenness centrality in social network
 - Avg. distance by probabilistics paths in the contact graph

Betweenness centrality (source: wikipedia)

Seeding in the literature (3)

- Wei et al., 2012
 - Seed and grow, an attack algorithm
 - Seed selection method is not detailed in the paper (i.e., how nodes selected that are identified by injected subgraph)
- Yartseva & Grossglauser, 2013
 - Formal analysis of a simplified attack variant (e.g., proving phase transition)
 - Seeding method is not detailed in the paper
- Beato et al., 2013 (protection)
 - Some nodes act as proxies to achieve structure modification
 - Top nodes selected as seeds
- Gulyas & Imre, 2013 (protection)
 - Privacy-enhancing identity management
 - Seeds are selected randomly from top 25% nodes (by deg.)

Evaluation method

 Evaluation against the Nar09 attack (Narayanan & Shmatikov, 2009)

- Datasets: Slashdot, Epinions, LiveJournal
 - Structurally diverge
 - Large datasets (66-82k nodes),
 one smaller (10k nodes)
- Data perturbation

$$- \alpha_{V} = 0.5$$
,

$$-\alpha_{E}$$
=0.75

- Attack parameters
 - 2 perturbation, 3 rounds

$$-\Theta = 0.01$$

Observed error rate ca. 1-2%

Analyzed measures

- k-cliques (k∈{4, 5, 6})
 - With any degree
 - From 20% top by deg.
- k-neighborhood
 - Similarily as above
- Random nodes
 - From 10%, 20%, 50%top by deg.
 - From all nodes
- Top nodes

- Betweenness centrality
 - With any degree
 - 10%, 20% top by deg
- Closeness centrality
 - Similarily as above
- Local Topological Anonymity (LTA)
- Local Clustering
 Coefficient (LCC)
 - LCCH: skipping top 20%

Measurements of some properties

How node degree effects results:

- Propagation limited (4bfs)
- Higher degree, less seeds

Measurements of some properties (2)

Not all methods are good for seeding

Measurements of some properties (3)

Effects on phase transition boundaries

Measurements of some properties (4)

Seeding stability illustrated

top: good results, but only in large networks

betwc.1: good choice regardless of network size!

4cliques.2: good choice in dense networks closec.1, random1.: seems OK also

relationship of seed nodes matters

degree works as a good heuristic

Conclusion & future work

- We emphasized that seeding can influence and limit propagation, for which one should consider
 - network size
 - network structure
- Properties demonstrated
 - global role of seed nodes (degree, betwc, closec)
 - local role of seed nodes (cliquish or BFS neighboring)
 - seed stability
 - phase transition dependency on seeding method (beside size, structure)
- We highlighted top performers
- Future work
 - Measure success of unstabe attacks
 - Updating attacker model in related work

Thank you for your attention! Questions?

Gábor György Gulyás

gulyas@crysys.hu Laboratory of Cryptography and System Security (CrySyS) Budapest University of Technology and Economics www.crysys.hu