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Abstract—Social networks allow their users to make their
profiles and relationships private. However, in recent years
several powerful de-anonymization attacks have been proposed
that are able to map corresponding nodes within two seemingly
unrelated datasets solely by considering structural information
(e.g., crawls of public social networks and datasets published
after sanitization). These algorithms consist of two parts: initial
selection of seed nodes and then a propagation phase. In
related papers, several seeding procedures are proposed, although
detailed comparison is often left unexplored, i.e., how one method
differs from the others with respect to the overall outcome of the
algorithm. In this paper, beside discussing the existing analysis of
seeding methods, we experimentally analyze how different seed
selection algorithms perform compared to each other, and we
highlight significant differences emerging even in the same or in
structurally divergent networks.

Index Terms—Privacy, Re-identification, Simulation, Social
Networks.

I. INTRODUCTION

Social network based services have a wide variety of
functionality. Some provide interfaces for managing social
relationships, while others provide utilities for collaboration.
However, a common feature of these services that they have an
underlying graph structure which can be used in several useful
ways. This feature can also be abused: malicious parties can
decide to correlate user identities between networks. Other
actors having access to sanitized copies of networks (e.g.,
business contractors or research groups) can try to reassign
original node identities in order to use anonymously published
private data without limitations (e.g., data monetization).

The first attack of this kind was the structural de-
anonymization attack proposed by Narayanan and Shmatikov
in 2009 [1] (Nar09), designed specifically for re-identifying
a significant fraction of nodes in large networks. The authors
in their main experiment re-identified 30.8% of nodes being
mutually present in a Twitter and a Flickr crawl with a
relatively low error rate of 12.1%. Since their work, several
attacks with the same principles have been published [2]–[7].

These attacks differ in many aspects, however, in general
they consist of two sequentially executed phases, namely the
global and local re-identification phases [8], or seed identifi-
cation and propagation phases [1]. The goal of the first phase
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Fig. 1: Datasets for the example of de-anonymization (left:
auxiliary public network; right: sanitized network with private
attributes).

is to find globally outstanding nodes (the seeds), e.g., by their
degree, as an initialization of the second phase. After having
a sufficient number of seeds, the second phase starts to extend
the seed set in an iterative way, locally comparing nodes being
connected to the seed set.

Let us consider an attacker, Mallory, obtains datasets as
depicted on Fig. 1, wishing to learn an otherwise inaccessi-
ble private attribute by structural de-annymization: who is a
democrat or republican voter in the public network (nodes with
dashed or dotted border). Thus, in the global re-identification
phase, he creates the seed set by re-identifying (or mapping)
vDave ↔ v3 and vFred ↔ v2 as they have globally the
highest (unique) degree values in both networks. Then Mallory
continues with local re-identification by inspecting nodes
related to the seed set. First he picks vEd being the common
neighbor of the seeds with the highest degree, by comparing
and mapping it as vEd ↔ v7. Then the algorithm continues
iterating through unmapped nodes.

Although multiple adaptations exists of the Nar09 algorithm
[2]–[7], and other works use the attack for simulation eval-
uation of privacy-enhancing features [8]–[10], an important
aspect of the attacker model is often neglected: how changing
the seeding method influence the performance of the prop-
agation. In our work we aim filling this gap by analyzing
multiple methods on different networks, and also including
related works discussing this topic [1], [5], [8].

Our main contribution in this paper is that we show that
various seeding methods have a different effect on propagation
even in the same dataset, but also in structurally divergent



networks. This makes accurate comparison of new attacks and
protection mechanisms cumbersome. With running simulations
of the original algorithm Nar09, we show that the overall
recall rate is influenced by several properties of seeding.
One of the most important factors is the measure used for
globally selecting the seed set (e.g., betweenness centrality),
and the connection between the nodes (e.g., having a cliquish
structure). On multiple datasets we show that the number of
seeds can also determine the outcome of propagation. The
minimum number of nodes required vary per seeding method
and network (where size and structure both matter). We give
examples how the phase transition attribute of propagation
changes for different seeding methods (i.e., when small in-
crements in the number of seeds greatly boost propagation).
We furthermore discuss stability of seeding for given seed
set sizes, when the given seed set size results wide-scale
propagation only occasionally.

II. RELATED WORK

In the original experiment the Nar09 attack used 4-cliques of
high degree nodes as seeding. Its local re-identification phase
works similarly as described in the example of Section I, being
based on a propagation step which is iterated on the neighbors
of the seed set until new nodes can be identified (already
identified nodes are revisited). In each iteration, candidates for
the currently inspected source node are selected from target
graph nodes, sharing at least a common mapped neighbor with
it. At this point the algorithm calculates a score based on
cosine similarity for each candidate. If there is an outstanding
candidate, a reverse match checking is executed to verify the
proposed mapping from a reversed point of view. If the result
of reverse checking equals the source node, the new mapping
is registered.

Here we include the most relevant works appeared since
[1]. Narayanan et al. in 2011 presented another variant of
their attack [2] specialized for the task of working on two
snapshots of the same network (with a higher recall rate).
Another proposal of Wei et al. [3] challenged Nar09; however,
their attack is only evaluated against a light edge perturbation
procedure, instead of the more realistic one proposed in [1].
The latter deletes edges from both networks (e.g., node and
edge overlaps can be as low as 25%), while in [3] edges are
only added to the target network (up to 3%) without deletion;
this is a remarkable deficiency. In addition, experiments in [3]
are performed on rather small graphs: further experiments need
to show if algorithm in [3] also performs better on networks
having tens of thousands of nodes or larger (if their attack is
still feasible on such datasets).

Recently, it has been shown by Srivatsa and Hicks that
location traces can also be re-identified with similar methods
[4]. In their work they succeeded in identifying 80% of users
by building anonymous networks by observing location traces,
and using explicit social networks for de-anonymization. Be-
sides structural re-identification attacks, some works extend
the capabilities of structural de-anonymization by involving
user content and attributes, too [6], [7], [11].

Seeding is an important aspect of the de-anonymization
procedure, as shown by our results. It is needed to be detailed
both for comparing new attack schemes and for evaluating
protection mechanisms. However, only a few papers discuss
the relevance of seeding, and in others, related details are
absent. For instance, Narayanan and Shmatikov describe how
they used 4-clique seeding consisting of high degree nodes [1],
but in another work [3], it is not detailed in how seeds were
selected during the evaluation of the propagation phase (i.e.,
the nodes that the injected subgraph is connected to). Similarly,
protection mechanisms as [9], [10] should be evaluated against
attackers capable of using multiple seeding methods.

Related to the effect of seeding on propagation, Narayanan
and Shmatikov highlight that seeding has a phase transition
property regarding the number of seeds [1]: at some point
while increasing the number of seeds, there is only a little
difference when the output of propagation rises significantly,
reaching the maximum (examples provided on Fig. 3). They
also note (without details) that transition boundaries depend
from networks structure and seeding method. Seeding stability
is also mentioned in their paper as the probability of large-
scale propagation with respect to the number of seeds.

Yartseva and Grossglauser provide further analysis of seed-
ing [5], and they propose two simpler, but similar algorithms to
Nar09, that allow formal analysis. In their work, the existence
of phase transition is formally proven w.r.t. to the seed set
size for random graphs generated by the Erdős-Rényi model
G(n, p). Phase transition is also verified by simulations both
for synthetic and real-life social networks. However, their
work discusses the essential seed set size for propagation
as a function of the network parameters and the propagation
settings, but neglects how seeds were obtained, i.e., the seed
selection method.

In [8] phase transition feature is verified for small networks,
and seed location sensitivity of the algorithm is also asserted. It
must be noted however, the seed location is less of an issue for
large networks, as it is easier to find enough seeds for a stable
output. This is likely to be caused by the greater redundancy
in topology against perturbation, and larger ground truth sizes.
Although, as shown in our experiments later, seed node degree
is still an influential factor of the final output.

While seed size and phase transition are studied aspects
of the attacker model in the literature, there are still several
questions left open. For instance, how strong is the difference
between different seeding methods, e.g., w.r.t. minimum seed
size and seeding time? Is there a globally best seeding method?
In our work we analyze seeding to answer these and other
related questions.

III. EVALUATION METHOD

Given a sanitized graph Gtar to be de-anonymized by
using an auxiliary data source Gsrc (where node identities
are known), let Ṽsrc ⊆ Vsrc, Ṽtar ⊆ Vtar denote the set of
nodes mutually existing in both. Ground truth is represented
by mapping µG : Ṽsrc → Ṽtar denoting relationship between
coexisting nodes. Running a deterministic re-identification



attack on (Gsrc , Gtar) initialized by seed set µ0 : Vsrc → Vtar
results in a re-identification mapping denoted as µ : Vsrc →
Vtar.

A. Data Preparation

During our experiments we used multiple datasets with
different structural characteristics in order to avoid related
biases in the results. In addition, we used large networks
consisting of tens of thousands of nodes, where brute-force
attacks are not feasible. We obtained two datasets from the
SNAP collection [12], namely the Slashdot network crawled in
2009 (82,168 nodes, 504,230 edges) and the Epinions network
crawled in 2002 (75,879 nodes, 405,740 edges). The third
dataset (LJ66k) is a subgraph exported from the LiveJournal
network crawled in 2010 (at our dept.; consisting of 66,752
nodes, 619,512 edges), and for comparison a smaller dataset
(LJ10k) was also included (10,056 nodes, 231,416 edges). All
datasets were obtained from real networks in order to maintain
our measurements being realistic.

For data generation we used the perturbation strategy
proposed by Narayanan and Shmatikov [1], as we found
this method to be producing fairly realistic test data. Their
algorithm takes the initial graph (µG) to derive Gsrc, Gtar

with the desired fraction of overlapping nodes (αv), and then
edges are deleted independently from the copies to achieve
edge overlap αe. We found αv = 0.5, αe = 0.75 to be
a good trade-off at which a significant level of uncertainty
is present in the data (thus life-like), but the Nar09 attack
is still capable of identifying a large ratio of the co-existing
nodes. Without adding perturbation it could correctly identify
52.55% of coexisting nodes in the Epinions graph, 68.34%
in the Slashdot graph, and 88.55% in the LiveJournal graph
(LJ66k). These rates were proportional to one degree nodes,
reflecting significant structural differences.

B. Simulation Settings

Our experiments were run on a 2.0GHz Intel Core i7
processor with 8GB RAM, and our framework was imple-
mented in Java. However, we must note that our intent is to
show differences between measures and highlight trends, and
not to provide razor-sharp results; thus we caution drawing
conclusions from subtle differences in results (e.g., minimum
seed set sizes of betwc.1 and betwc.25 in Slashdot on
Fig. 5b).

For each experiment we created two random perturbations,
and run the algorithm three times. We found this to be a good
trade-off between computation time and having reliable results.
In addition, as we found little difference in the results between
the directed and undirected versions of Nar09, for the sake of
simplicity we used the undirected variant.

Nar09 has another important parameter, denoted as Θ, that
controls the ratio of true positives (recall rate) and false pos-
itives (error rate). The lower Θ is the less accurate mappings
Nar09 is willing to accept, as Θ controls how outstanding the
best candidate should be from the others. The attack produced
fairly low error rates even for small values of Θ (see Fig. 2),

hence we worked with Θ = 0.01. The error rate stayed around
1-2% for large networks, always less 5%; error rate was only
proportionally higher in LJ10k to the recall rate.

We also executed experiments for characterizing phase
transition prior to our evaluation. For measuring sensitivity of
the number of seeds, we executed multiple measurements by
selecting random nodes from the 25% of top degree nodes. Our
measurements verified the phase transition effect and showed
the structure dependency of this property (see Fig. 3).

IV. SEEDING METHODS

The seeding method reflects the strength of the attacker, who
is often limited by the quality of the background knowledge
he has. However, a well-informed attacker may have the
opportunity to choose between different seeding methods.

A. Used in the Literature

The original paper used high-degree nodes for seeding that
formed 4-cliques [1] (in their main experiment they used
seed nodes with at least a degree of 80), while another
work used nodes from 4-cliques regardless of degree [8] for
smaller networks. Several other seeding methods appeared in
the literature, as matching top nodes [2], [9], (presumably)
sampling random nodes in [3], and seeds selected randomly
from top 25% high degree nodes [10].

Srivatsa and Hicks adopted the concept of Nar09 to a
special application, namely to matching a social network
(Gsrc) with a contact graph of devices (Gtar). In their work
they used betweenness centrality for seed selection in Gsrc

and proposed a probabilistic variant of a distance measure to
find corresponding nodes in Gtar [4].

B. Seeding Algorithms for Evaluation

In our experiments we generalized clique based methods,
where seed nodes were requested to form k-cliques (k ∈
{4, 5, 6}). We had cases where node degree was not consid-
ered (later referred to as e.g., 4cliques), while in other
cases seeds were sampled from the top 20% by degree (e.g.,
4cliques.2). In order to see the magnitude of the effect
of the clique structure, we compared these results against k-
neighborhood seeding (with corresponding parameters), where
nodes are collected with breadth-first search starting from a
random node (e.g., 4bfs, 6bfs.2).

These tests alone could reveal the sensitiveness of the
propagation algorithm regarding node degree; however, in
order to see how degree itself influence overall results, we
included using k-top degree nodes (top), and sampling from
random high degree nodes in the top 10%, 25%, 50% subsets
(e.g., random.25), and from all nodes (random), for the
sake of completeness.

We also analyzed more complex measures than node degree,
namely betweenness (e.g., betwc.2, seeds that had the
highest betweenness in the set of the top 20% by degree) and
closeness centrality (e.g., closec.2). These measures can be
calculated together as being based on shortest paths: between-
ness reflects centrality respecting the number of shortest paths
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Fig. 2: Varying the Θ parameter on per-
turbed networks (with random.25).
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Fig. 3: Phase transition property illus-
trated for random.25.
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Fig. 4: Differing characteristics of seed-
ing strategies in LJ10k.

the node is on, while closeness gives the average distance from
all other nodes in the network. Betweenness was used only for
small networks in [4], thus its utility in larger networks was
uncertain until this paper. In addition, calculating betweenness
and closeness is very costly for large networks, hence we also
analyzed if the number of nodes involved in the calculation
process can be decreased.

We included two additional exotic seeding measures. Local
Topological Anonymity (LTA) values are calculated according
to the structural uniqueness of nodes in their 2-neighborhoods
[8] (the lower the value the more unique the node is), thus
our intuition was that nodes with low LTA values are likely
to be good seeds (marked as lta). We also tested seeding
with nodes having the highest Local Clustering Coefficient
(LCC) values in the network (lcc). We had the intuition that
probably not the nodes with the most dense neighborhood
are providing the better seeds, hence we measured high
LCC (lcch), where highest LCC nodes were selected after
skipping the top 20% of LCC.

V. EVALUATION AND RESULTS

During our evaluation we calculated measures on Gsrc, and
to keep our focus on the comparison, we used the ground
truth to map selected seed nodes to their pairs in the Gtar.
However, these methods can be implemented to work without
background knowledge, there are several examples of such
implementations in the literature [1], [2], [4].

We were looking to find the minimum number of seeds al-
ways granting large-scale propagation in our experiments (i.e.,
stable seeding) and measured runtime of the seed selection
phase (or resource requirements in other words). Although
we found only minor differences in recall rates, analyzing
further aspects seems to be interesting future work (e.g., run
time differences of the propagation phase). We used seed size
stepping granularity as 5 in simulations executed on LJ10k and
60 in larger networks (or lower for competitive techniques in
order to get more detailed measurements).

It must be noted regarding runtimes that some measures
require significant preliminary calculations to seeding: be-
tweenness and closeness centrality (these can be calculated in
parallel), LTA, and LCC. We did not include these preparations

into seed timings, as although they may run longer, yet these
are still computationally feasible (e.g., within a few hours of
computation time), and need to be done once. Nevertheless, an
attacker may consider this when choosing the seeding method.

A. Large-Scale Propagation
Initial simulations were performed on LJ10k, the smallest

network included in our experiments. Results revealed that
node degree takes an important position as a secondary mea-
sure of seed selection. For all k-clique and k-neighborhood
based methods we observed that when using high degree
seeds, less nodes are needed for large-scale propagation, and
more importantly, Nar09 was able to access the network more
widely. For instance, compare 4bfs and 4bfs.2 on Fig.
4 – there is a clear limit for propagation when using 4bfs
seeding. Thus we used only high-degree variants of the k-
clique and k-neighborhood seeding methods in our analysis
related to larger networks (in addition, this speeds up seeding).

Degree dependent node selection for other measures also
lead to differences in results, although it did not limit the
maximum level of propagation. The examples shown for
betweenness centrality on Fig. 4 illustrate how degree defines
the number of seed nodes that are required for successful
propagation.

Other factors can influence results, too. While lcc could
not reach an acceptable level of re-identification in our
measurements (resulting recall rates at most around 20%),
the lcch variant produced better rates, though it was also
incapable of reaching recall rate significantly higher than 70%,
similarly to 4bfs (check on Fig. 4).

Additionally, our measurements on Fig. 4 confirm that
phase transition property of the propagation phase depends on
the seeding measure (as also stated in [1]): phase transition
start- and endpoints, steepness differ for various methods. For
example, while phase transition both for 4bfs and 4bfs.2
start early, and have a mild increase, for the top method it
can be rather characterized as a sharp jump.

B. Seed Stability
Example for 4bfs.2 on the LJ10k network provides

insight on seeding stability on Fig. 4. While it allows propa-
gation reaching high-end of recall for |µ0| ∈ [20, . . . , 50], it
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Fig. 5: Performance of propagation phase vary as different seeding methods are used. While some methods performed equally
well in all cases (e.g., betwc.1), some methods produced different results according to the size of the network (e.g., top),
to structural differences (e.g., 4cliques.2), or according to the relationship between seed nodes (e.g., 4cliques.2 vs.
4bfs.2).

can even achieve an average recall of 20% for 5 seed nodes.
By including the variance besides (divided by 102), a notable
variance can be noticed initially, taking values between 1000-
1300. As seeding gets stable, it apparently disappears as it
takes values between 0.1-23.3 for µ0 > 15 (other experiments
showed similar behavior, but not displayed for keeping the
figure clear). This happens for a simple reason: in case of
such a small amount of seeds the current instance of seed
nodes determines significantly the overall outcome of Nar09,
e.g., in these experiments propagation achieved recall rates of
0.26% or 78.1% for different seed sets.

As the error rate is low by design, an attacker can settle with
a low number of seeds that leads to large-scale propagation.
This even works in larger networks: with only a single 5-clique
seeding (5cliques.2) we could achieve recall rate as high
as 84.33% having the error rate at 5.62%. As future work, it is

interesting to check whether currently investigated trends are
the same for unstable seeding.

C. Degree as a Heuristic

The summary of our measurements for LJ10k and the other
three networks is shown on Fig. 5, including methods that
resulted in large-scale propagation, and where runtimes and
the number of required seeds were sufficiently low. With
accordance of the results in LJ10k, where these measures
with higher degree nodes resulted better recall rates, we
only calculated betweenness and closeness centrality on high-
degree nodes to reduce runtimes (top 10%, 25%). For all three
networks results showed that the higher degree nodes we used,
the lower the seeding time was.



D. k-cliques and k-neighborhoods

The network structure determines which seeding methods
could be used or not. Using cliques were not feasible in the
Slashdot network: although it was possible to find enough
seeds with 4cliques.2, this was a less prominent result. In
addition, for 5cliques.2 and 6cliques.2 our seeding
algorithm timed out (2 mins) before finding enough disjoint
cliques. These methods were more competitive in the Epinions
network, we measured best results in the LJ66k dataset (the
most dense one), as these were capable of stable seeding with
the least number of seeds.

For reaching unstable large-scale propagation in our dense
test networks, cliques provided also very competitive results.
A single clique (of any size) was enough in LJ10k, and we
could achieve the highest recall level by simply using two
cliques. In LJ66k, a single 4cliques.2 was enough to reach
recall of 33.32% with an error rate of 4.34%. Comparing these
results to 4bfs.2, 5bfs.2 and 6bfs.2 shows that structure
between seed nodes can make a perceptible difference in the
performance of propagation. In addition, the latter techniques
were not sensitive to network structure: these had low runtimes
in all large test networks, but also had an average score
regarding seed sizes.

E. Most Effective Methods

Clearly top and betwc.1 seeding methods led to best
results, that were additionally independent of network structure
(in larger networks). The discovery of betwc.1 in this
context is important, e.g., as a protective method may aim
preventing de-anonymization by targeting top nodes, either
by removing or modifying them. Thus betwc.1 allows the
attacker choosing seeds from a larger candidate set. The
random.1 method is slightly less effective, but it could
also be used alternatively. Additionally, closec.1 provided
remarkably good results in the densest test network.

F. Exotic Seeding Measures

None of the exotic seeding methods could be put to the
front of the ranking. Regarding the minimum number of nodes
required for stable seeding, the lta measure produced fair
results in large networks, but due to the large number of
nodes it worked with it had high runtimes. The lcc and
lcch seeding methods had even worse results; both only led
to noticeable propagation in LJ66k, and had long runtimes.
However, we could not include these results as their highest
recall rate was less then the maximum (as in LJ10k).

VI. CONCLUSION

In this paper we analyzed the effect of the seeding phase
on propagation in de-anonymization attacks, and evaluated
multiple seed selection methods on the algorithm proposed
by Narayanan and Shmatikov [1]. We showed that the chosen
method can significantly influence and limit the possible
outcome of the propagation. With experiments we showed that
both the global role of the seed nodes (measured with between-
ness, closeness, degree) and the local structure between them

(clique structure vs. k-neighborhood) can solely and jointly
determine the success of propagation with the given seeding.

We confirmed and showed examples of phase transition with
respect the number of seeds, and also that this attribute has
different characteristics for various seeding methods, beside
being dependent on network size and structure. However,
our work also indicate that the seeding procedure should be
chosen regarding network size and structure, as not all methods
worked equally well for all datasets. We also highlighted
betwc.1 and top that were top performers on the large
networks in our experiments, regardless of network structure.

We believe our findings are essential for works aiming
to compare novel attack techniques to others and for papers
including simulation evaluations of defense methods. For the
prior, it is needed to synchronize attacker models, including
the seeding method in order to settle down on the same ground
for comparing results. In the latter case, seeding methods
represents another aspect of the attacker model that can be
tuned for alternative (and stronger) attacks. For example, an
attacker can react by choosing another seeding procedure in
order to decrease the performance of the users of a given
privacy-enhancing technique.
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