BlogCrypt: Private Content Publishing on the Web

Tamas Paulik

Dept. of Telecommunications
Budapest University of Technology
and Economics
Budapest, Hungary
paulik.tamas.email@gmail.com

Abstract—Voluntary disclosure of personal information is
becoming more and more widespread with the advent of Web
2.0 services. Publishing such information constitutes new kinds
of threats, such as further reinforcing already existing profil-
ing techniques through correlation of perceived user activities
to those publicly disclosed, but the most obvious of all is the
intrinsic threat that malicious third parties collect and combine
information we publish about ourselves. In this paper, we
evaluate currently existing solutions that are destined for ad-
dressing this issue, then propose a model of our own for pro-
viding access control for a user over information she published
and analyse our implementation thereof.

Keywords-profiling; web privacy; user content; Web 2.0

L INTRODUCTION

‘Profiling’ is a term expressing the tracking of the activ-
ity of users or visitors among certain services, €.g. a website,
for various purposes — the most probable motivation being
financial benefit through targeted advertising [4]. While
users of a service can, in some cases, certainly benefit from
the personalised content found on websites (e.g. in the form
of articles of their interest in an online newspaper), and re-
search shows that actual behaviour does not always match
what users claim about their objections against tracking
when certain benefits are offered in turn [5], profiling is a
privacy concern for many users. For example, it was shown
in a survey over German Internet users that 60% had avoided
a website in order to protect their privacy, and it is safe to
state that a high proportion of users have serious doubts
about efficiency and the integrity of the data protection
measures of commercial websites [5]. It must also be noted
that the technology has evolved since then, which poses even
bigger problems about privacy of online activities, as shown
later in this paper.

The ‘classical’ method of profiling through third party
cookies [2], further reinforced by the use of Flash cookies
(i.e. local stored objects or LSOs of Adobe Flash Player), is
living its renaissance [6]. A cookie is a file that can be
planted on the user’s hard drive for later retrieval by a web-
site [4]. Cookies have many purposes, one of which is mak-
ing up for the connectionless nature of the HTTP protocol by
identifying a user even after the end of the HTTP request. A
service that requires authentication (e.g. a webmail server)
usually relies on so-called session cookies to recognise that

Adam Maté Foldes
Dept. of Telecommunications
Budapest University of Technology
and Economics

Budapest, Hungary
foldesa@hit.bme.hu

Gabor Gyorgy Gulyas
Dept. of Telecommunications
Budapest University of Technology
and Economics
Budapest, Hungary
gulyasg@hit.bme.hu

certain HTTP requests belong to the same user. However,
third parties, e.g. advertisers, can also install a cookie con-
taining an identifier, and fetch it on every website that em-
beds their banners, thereby tracking the user between re-
quests made to different services. In contrast to HTTP cook-
ies that privacy-aware users reject or delete at regular inter-
vals, thereby making the advertiser overestimate the number
of unique visitors, Flash cookies tend to ‘survive’ since many
users do not even know that they exist, and they are not
affected by the ‘Private Browsing mode’ implemented in
modern browsers like Internet Explorer 8 and Firefox 3 [6].
An advertiser can even recreate HTTP cookies from Flash
cookies through a Flash animation embedded into a third
party website.

The appearance of Web 2.0 has also led to the evolution
of different approaches to profiling. For instance, a service
provider can offer various services to the user (as is the case
with Gmail, Google Calendar, Google Groups, Picasa etc.),
each of which logs activity to some extent. These logs can be
combined, and the provider gets a detailed image about the
behaviour of the user in many cases. It must be noted that
this kind of tracking does not mandate using sophisticated
techniques like Flash cookies or client-side profiling soft-
ware — it is effectively the user who voluntarily profiles
herself for the service provider.

A service provider can also use information gathered
from other websites. For example, a social networking web-
site can retrieve the missing information in a user’s profile
by using the information found on the user’s blog at another
service provider, as was the case with Facebook until a re-
cent change in their privacy policy [7].

It must be noted that there exist privacy enhancing exten-
sions to profiling, e.g. profiling that is performed on per-
turbed or obfuscated data [8]. However, a privacy-aware user
may be concerned that such data alterations are not per-
formed before the information is sent to the central server.

All this discussion leads us to the conclusion that users
cannot entrust service providers with the protection of their
privacy. However, service providers are not the only threat to
online privacy. Anybody can crawl the public sources of
information on the Web in an attempt to find information
about a target. Using pseudonyms is not necessarily suffi-
cient for concealing our identity, as shown in Section II.

All this discussion supports the motivation that a user
must be able to control the access to the information she

publishes about herself. Our main contribution in this paper
is the proposal of such a privacy-enhancing tool that enables
fine-grained disclosure of private data. Our approach intends
to be general and does not target a single service or a single
type of service (e.g. social networking sites). Furthermore, it
does away with the use of trusted third parties, delegating the
responsibility of the protection of the information entirely to
a client-side application.

In Section II we discuss the threats arising from profiling
using publicly available data and compare the already exist-
ing solutions for this problem. Section III describes the re-
quirements we stipulated for a practical solution, followed by
the discussion of our proposed model in Section IV. In Sec-
tion V, we analyse our implementation of the aforemen-
tioned model. Finally, in Section VI, we conclude and dis-
cuss the future of our work.

II. PROFILING BY USING PUBLIC INFORMATION
AVAILABLE ON THE WEB

There certainly are situations where the user can also
benefit from being profiled. For instance, there are users who
claim that their web browsing experience is enhanced by
targeted advertising, since they only see advertisements
about goods that they are interested in, while others say that
not being bombarded by the same banners upon each
download of a webpage is better than having to view the
same advertisement all the time [4]. However, profiling can
also constitute a threat to privacy, as described below.

Narayanan and Shmatikov describe an attack where two
social network graphs can be correlated to make a mapping
between nodes that denote the same user [3]. The re-
identification has a stunningly high success rate of 31%. If
we suppose that an attacker can find the personally identify-
ing information for a node of one of these networks, she can
enrich the user’s profile by complementing the already ob-
tained information from the other one. The privacy of such a
user, who published information on the second social net-
work under the belief that her pseudonym is sufficient to
protect her anonymity, is then clearly violated.

Diaz, Troncoso, and Serjantov discuss an attack where
the adversary, who is in the possession of a social network
graph, infers the communicating parties in a mix network
[9]. The paper makes the assumption that interaction be-
tween the users is well described by how they exchange
private messages on the social network. Under these circum-
stances, it has been shown that sender and recipient anonym-
ity of the mix is compromised, i.e. the effective anonymity
set is reduced to its fifth, and anonymity does not increase
when the social network grows.

These novel attacks lead us to the conclusion that pub-
licly available information, e.g. which is published on social
networks can be used efficiently to match user activity be-
tween different services, regardless of the pseudonyms the
user may choose. To mitigate the risks arising from mali-
cious third parties using publicly disclosed information, there
is a need for solutions to address this issue. Therefore, after
evaluating currently existing implementations, we suggest a
model where the disclosure of information can be limited to
a set of users, and analyse our own implementation thereof.

III. ANALYSIS OF CURRENT SOLUTIONS, REQUIREMENTS

In this section, we propose requirements against a practi-
cal solution. Then, in the second part of the section, we dis-
cuss the merits and drawbacks of the currently existing im-
plementations, based on a categorisation scheme that we
designed.

A. Requirements against a practical solution

We have defined the following requirements against a so-
lution that we consider both practical and versatile.

Gradual deployability. Users of a service are likely to
prefer to continue providing public information for those
who do not install the software. If the software renders the
service useless for everyone but those who have it installed,
users are less likely to adopt the solution.

Full autonomy. An average computer user is unlikely to
be willing to hassle with the installation of third party soft-
ware like external cryptographic libraries. Therefore, we
prefer containing the entire software in a single installation
package.

Furthermore, service providers may choose to take a dif-
ferent approach to the privacy enhancing solution as time
passes, e.g. through taking down a trusted server, blocking
the distribution and operation of the application through their
API, or even implementing man-in-the-middle attacks by
faking a trusted third party. We find it easier to guarantee the
security of the solution by delegating the responsibility of
securing its environment entirely to the user.

Universality. Users may find it more practical to use a
tool that is compatible with many services. Furthermore,
should the service provider decide to take countermeasures
against the privacy enhancing software, users can still con-
tinue to use it on other sites. Although we think that the ideal
solution operates on a universal interface, the general inter-
face of a textfield is sufficient, since most services use this as
the means of publishing information.

Usability without compromises and easy installation.
The user is likely to quickly stop using a solution that seri-
ously harms the usability of the service or that is cumber-
some to install or configure.

Providing strong confidentiality. The privacy enhanc-
ing software must be able to guarantee the confidentiality of
the information against third-parties, i.e. through means of
strong cryptography. We aimed for the use of symmetric key
cryptography for the sake of simplicity, although the imple-
mentation of a more complex solution using asymmetric key
cryptography may be desirable.

No protection against discovery. While we think that a
solution that uses both steganography and cryptography is
the ideal implementation, the former is hard to implement,
mainly due to the imposed capacity limitations. However,
considering that discoverability can make certain service
providers hinder the use of the software, an option to use
steganography could be a considerable improvement in the
future. It must be noted that certain solutions we analysed
used fake data to substitute the ciphertext, thereby conceal-
ing the act of ciphering. We prefer steganography over fake
data, because the latter makes the solution service specific.

B. Evaluation of current implementations

In order for us to be able to define the requirements
against our solution, we devised a categorisation scheme
which aids us in classifying the currently existing solutions
(referred to as ‘software’ below), point out their deficiencies,
and evaluate our design. We have made our evaluation re-
garding the following attributes:

1. Gradual deployment

a.

b.

Possible: The service is not rendered useless if not
all users adopt the software.

Not possible: All users must adopt the software if
the usability of the service is to be maintained.

2. Autonomy

a.

b.

Completely autonomous (Full): The software uses
no resources that are not under its control.

Third party server needed (TPSe): The software re-
quires a server that is operated by a trusted third
party.

Third party software needed (TPSo): The operation
of the software is supported by other software de-
veloped by a third party.

Service provider collaboration needed (SPCN): The
service over which the software is to be operated
must cooperate to maintain the usability of the
software.

3. Universality

a.

b.

Service specific (SS): The software can only be
used over a set of well-defined services.

Uses general interface (GI): The software is oper-
ated over a well-defined interface that is used by
many services. An example of such an interface is a
textfield.

Uses universal interface (UI): The software uses an
interface that all services have; therefore the soft-
ware can cooperate with all services. An example of
such a solution is an intelligent agent that makes
sure that all information the user provides reaches

the service provider in an encrypted form.

4. Compromises

a.
b.

c.
d.

5. Co
a.

b.

c.

6. Co
a.
b.

C.

All functions remain usable (100%): The software
does not hinder the use of the service at all.

The majority of the functions of the service remain
usable (51%-99%)

Some functions remain usable (25%-50%).

The service is rendered useless (0%-24%).

mfort of use

The software requires minimal interaction, e.g. se-
lecting content and keys (Min)

The software requires more interaction than mini-
mal (Normal)

The use of the software is uncomfortable (Uncomf)

mfort of installation

No configuration needed (NoConf)

Some configuration is needed, but it is more or less
straightforward (Min)

Installation and configuration takes long, and re-
quires expertise (Compl)

7. Encryption

a.
b.
c.
d.

Symmetric cipher (Sym)

Asymmetric cipher (Asym)
Both types of cipher (Both)
Custom algorithm (Custom)

8. Discoverability

a.

b.

c.
d.

The software uses strong cryptography, but its pres-
ence is easily discovered (Crypto)

The software uses strong cryptography and replaces
encrypted information with fake data which appear
to be real (Crypto+Fake)

The software uses steganography (Stego)

The software uses steganography and cryptography
(Stego+Crypto)

We have summarised our evaluation of the currently ex-
isting solutions in Table I.

TABLE I. CLASSIFICATION OF CURRENT SOLUTIONS

Gradual . . Com- Comfort Comfort of . . -
Program Autonomy Universality . Installa- Encryption | Discoverability
Deployment promises | of Usage tion
Lockr [11] Possible TPSSGP’ gﬁ So, ss 100% Min N/A Both Crypto
. 51%- .
FaceCloak [12] Possible TPSe SS 999 Min NoConf Both Crypto+Fake
0
. 51%-
NOYB [1] Possible TPSe SS 999 N/A N/A Custom Crypto+Fake
0
. . 51%-
FlyByNight [10] Possible SPCN SS 999 Normal NoConf Both Crypto
0
. . 51%-
FireGPG [15] Possible TPSo GI 999 Normal Compl Both Crypto
0
Ideal Possible Full Ul 100% Min NoConf Both Stego+Crypto

IV. SUGGESTED MODEL

We suggest a 4-phase model for our implementation, ex-
cluding the creation of the content itself (see Fig. 1.):

1. Defining authorised users. Securing the information,
i.e. by the means of strong cryptography.

2. Posting the secured information onto the site of the
service provider.

3. Manual distribution of keys out-of-band.

4. Revealing the information for authorised users.

A. The operation of BlogCrypt

We implemented our solution called BlogCrypt [16] as a
FireFox extension. It features a user interface for defining
keys, encrypting textual information etc. The user types the
information into the interface of the service where she
wishes to post, and selects the text (e.g. an entire blogpost or
the most sensitive parts of it) to be encrypted. Provided that
the text is in a textfield or textbox, BlogCrypt replaces the
highlighted information with its encrypted version, encoded
in Base64. The encrypted block has a header which contains
an identifier for the key, the cipher that is used and the length
of the encrypted block. The inspiration for the format of the
header was BBCode; the header is effectively a [crypt] tag
with the attributes keyid, algo and length, but without a clos-
ing counterpart, as many services filtered our tag when it was
closed by [/crypt] in a syntactically correct fashion. As such,
the length attribute was defined as necessary in order to
make up for the missing closing tag.

Our means of defining authorised users is defining cryp-
tographic keys for each of them. BlogCrypt supports a hier-
archical authorisation model, which means that a certain
piece of information can be secured by multiple keys. The
user needs to be in the possession of all keys in the hierarchy
in order to be able to decrypt the information. The unique-
ness of the key identifiers must be guaranteed within a cho-
sen DNS domain by default; however, the user can choose to
make a key identifier globally valid. All keys are always
stored locally to the web browser instance.

BlogCrypt secures the information by performing en-
cryption with AES-CTR or AES-CBC. These algorithms,
among other useful features such as Base64 encoding, are
provided by the PidCrypt library [17], which we include in
the installation package. The authorisation hierarchy is real-
ised by multiple encryption of the same block. However, the
encrypted block can contain arbitrary information, which
means that the decryption of a block can yield an ensemble
of plaintext and other encrypted blocks that can be decrypted

-4 Client1-Sender ~/Client2-Recipient

5 ==
55 -

Browser

7 Lot

Write 3 p

3. Send key (00B) ([
=

Figure 1. Our suggested model

with a key that is a child of the current key in the hierarchy.

An encrypted block can be revealed provided that the
user is in the possession of the key that was used to encrypt
it. BlogCrypt looks for the key identifier of the block within
the local key database. As an explanation of the role of the
different types of keys, let us consider the example key data-
base of Table II. Suppose that the user visits a webpage un-
der the DNS domain a.com, and finds an encrypted block
with key identifier /. Both domain and global keys exist, but
the domain key <a.com, 1> is used for decryption, since
domain keys are preferred over global keys. If the webpage
had contained an encrypted block with key identifier 4 in-
stead of /, the global key with identifier 4 would have been
used for decryption. It must also be noted that, while key
identifier 2 is present under twice in the database, it is unique
within each DNS domain. Therefore, if key identifier 2 is
found on a downloaded webpage, BlogCrypt chooses
<a.com, 2> as the decryption key for pages under a.com,
while <b.com, 2> is chosen for webpages hosted under
b.com. If, for a given encrypted block, no suitable key is
found in the database, decryption fails, and the encrypted
block is substituted by an error message.

Decryption is automatic in BlogCrypt, provided that the
necessary keys are imported into the database. However,
there are situations, such as editing one’s own blogpost that
contains encrypted blocks already, where this is undesirable.
BlogCrypt features a function called Editor Mode for this
reason. This turns off automatic decryption for the time be-
ing. In other cases, such as downloading a webpage with
AJAX content, automatic decryption does not work. This is
because the browser fires the onLoad event when the web-
page is loaded. At this point however, the AJAX parts are
mere placeholders that are populated later. When all parts of
the webpage have finished loading, the user can initiate
manual decryption. This causes BlogCrypt to rescan the
webpage for encrypted blocks and decrypt each of them
again.

B. Key management

This section discusses the limitations of the currently im-
plemented key management, and lists the challenges of de-
signing a more advanced scheme.

1) Current key management possibilities

Key management is a vital issue in every solution that
uses encryption and is destined to share some secret with a
larger group of users. The current version of BlogCrypt fea-
tures only manual importing-exporting of keys. This is not a
problem for only a few users (i.e. few keys), but it becomes
quite cumbersome when the number of authorised users or
groups is increasing. The different aspects of key manage-
ment (i.e. publishing the content in an encrypted form, deny-

TABLE II. AN EXAMPLE KEY DATABASE

Domain Keyld Key
a.com 1 a
a.com 2 b
a.com 3 c
b.com 2 d
global 1 e
global 4 f

ing access to an authorised user or group, redistribution of
keys) can be highlighted in the following situations:

Access is provided to multiple users. A key is created
for each user, and then the information is encrypted with
each. The encrypted blocks are posted onto the service. This
works for a little number of authorised users, because the
number of encrypted blocks and the burden of key distribu-
tion increase linearly in the number of users. However, deny-
ing access to a user means simply deleting the encrypted
block corresponding to her key.

Access is provided to multiple disjoint groups of us-
ers. This is a generalisation of the previous situation. The
information needs to be encrypted with multiple keys, i.e.
one for each group, and then each encrypted block needs to
be posted onto the service. The order of magnitude of keys is
proportional to the number of groups, and — in order of mag-
nitude — inversely proportional in the number of users in the
largest group. Denying access to a member of a group means
creating a new group key, encrypting the information with it,
reposting the encrypted block, and then distributing the keys
to the remaining members of the group through an out-of-
band mechanism. This means that the burden of key redistri-
bution is proportional in order of magnitude to the number of
users in the largest group. Denying access to an entire group
is done by deleting the corresponding encrypted block.

Access is provided to multiple groups of users where
groups intersect each other. This is the most general situa-
tion to be considered. Publishing the information is the same
amount of work as in the previous situation. However, since
a member may possess multiple group keys, prohibitive key
revocation (i.e. one considers that users in a group are not
trusted) means that all groups have to have their keys redis-
tributed which intersect with the untrusted group.

These situations are encountered by different types of us-
ers. The first one is the casual blogger: she occasionally
creates some content (e.g. some news about her last vaca-
tion) which she only shares with some of her friends. Her
possibilities range from creating a separate key for each
friend to forming a big group of all of them. Her choice is
likely to depend on whether she opts for the ease of denial of
access or that of publishing the information.

The second type of user is the social networker: she in-
tends to share her content with groups from a social network.
She signs up for each, and creates a key for each of them.
The groups most likely intersect at some users, which means
that we are facing the third situation above. However, the
user practically cannot distinguish members of a group. As
such, prohibitive key revocation is not possible.

The third type of user is the ‘double agent’: she distrib-
utes information to completely different groups of interest.
For instance, suppose that a student would like to throw a
party for her birthday. She presumes most of her family will
come, but she sends an invitation to her friends as well.
Since the room in her flat is limited, she retracts the invita-
tion sent to the friends as soon as they are approaching the
maximum.

All this considered, we believe that easy denial of access
should not be the primary goal of the user, since any author-
ised viewer may copy the decrypted content to her hard drive

and publish it again someplace else if her access is revoked.
Rekeying is somewhat more relevant, e.g. when a group key
is believed to be compromised, so as to mitigate the posterior
impact of the incident. We emphasise that easy publishing is
the most important factor for the user.

2) Other issues

It is safe to say that the implementation of some ad-
vanced key management mechanism would be a huge im-
provement in BlogCrypt. We listed some of the ideas we are
currently examining in Section V. However, there are some
factors that must be considered when designing a key man-
agement scheme. We are examining the following issues.

Authentication. Exchanging keys is a vulnerable proc-
ess. In order to eliminate the possibility of man-in-the-
middle attacks, the communicating parties need to authenti-
cate each other. Public key infrastructures (PKIs) are a
widely deployed solution for this problem [13], but their
management can be cumbersome, if not completely unfeasi-
ble. We think that a distributed ‘web of trust’ like PGP is
more suitable in this application than a PKI that is somewhat
centralised by nature.

Media for automatic key distribution. Social networks
can be used efficiently for the purpose of key distribution.
For instance, a Facebook application could be utilised to
make the process fully automatic, e.g. through fetching the
public key that was posted onto the profile of a user. Since
many social networking sites allow users to upload photo-
graphs, the steganographic capacity thereof could also be
exploited for exchanging keys.

Advanced trust management. Role-based access con-
trol could be a way to assign roles to people and provide
access based on their memberships. There are schemes that
make this concept self-enforcing without central entities
[14].

V. BLOGCRYPT: ANALYSIS OF THE IMPLEMENTATION

The chosen platform strictly defined the tools of devel-
opment. The user interface (see Fig. 2.) was programmed in
XUL, while the logic was implemented in JavaScript. These
two languages allow easy retrievals from and substitutions
into web pages, besides AES encryption with the needed
efficiency.

The implementation is divided into separate modules
which correspond to the main functionality described earlier.
The most important modules, i.e. encryption, decryption and
key management, are loosely coupled.

As mentioned earlier, BlogCrypt supports entirely man-
ual key distribution only in its current state. The user may

’

What is Lorent Ipsum)

Password chooser

|
g |4
tempor Selected text 1

magna aliqua. Ut

Encrypt 2_!.

Switch Editor mode OFF

Languages "Lorem ipsum dolor sit 5

Blogerypt »

Show Passwords
]

4 < KeyID-s for domain
[i! + eshlinhin Force Decryption
mCIvpt Testglol Global KeyID-s
length=686] U2F=dGVk PR ® | testglobal

OCSNV0O/Fz6iwZ GOTOXZWTwWGZOR1 UL+KZ04WQ77+E
W8cXuSwWoBjAIO zZDv1KDVyJéhYa uaOcGuhkujRFed
RaMnCuYR6£aDQN JWFGB4Uo+oB2yB Mn7 18N10J!
TQNvVYDYABY/L] M8cVeQY9cp48M/ hkb/CgPrSgd7ul

£ZUUU yeals Old. RiChard MCUNNIOCK, a Laun piroiessol St opoo

Figure 2. The user interface of BlogCrypt

create, modify, delete, import, export symmetric keys and
distribute them out-of-band. The implications of this are
discussed in Section IV.

Furthermore, we have analysed our implementation be-
low in regards to the requirements we had stipulated.

Gradual Deployment: Possible. A user protecting her
information using BlogCrypt has no effect on the operation
of the service at other users.

Autonomy: Completely autonomous. The program does
not require additional third-party software, an external server
or the cooperation of the service provider.

Universality: Uses general interface. The program uses
textfields, which is a common property of the vast majority
of today’s services.

Compromises: 51%-99%. The operations that require
server side applications to interpret the data (e.g. searching)
fail. It must be noted that since our goal was to hide the in-
formation from third parties including the service provider
itself, this is not a fault in our design, rather a feature.

Comfort of Usage: Mostly minimal interaction. Apart
from the creation of keys, the operation is fully automatic
(except on pages with AJAX content). In the long run, the
only user interaction required is to mark the text to be en-
crypted.

Comfort of Installation: No configuration. The software
can be installed with a single click, similarly to other Firefox
extensions.

Encryption: Symmetrical. BlogCrypt uses the symmet-
rical cipher AES.

Discoverability: Cryptography. The use of the software
is easily discovered.

Summarising the above, the practical realisation of our
theoretical model is ideal according to most of the categories
defined in our evaluation scheme, and conforms to the re-
quirements. As such, we consider the implementation as
successful as far as our goals are concerned.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have defined a model for access control
of published information, classified other solutions for the
same task, and provided the details of our reference imple-
mentation called BlogCrypt. We believe that while our solu-
tion is simple, it not only matches the power of other imple-
mentations, but no other evaluated solution delivered all of
the key values of BlogCrypt on its own. User-friendliness is
another merit that we would like to emphasise.

However, implementing a proper key management
scheme could provide a boost to the practical value of the
implementation. As such, our further research is likely to
focus on the issues of key management and distribution. We
are going to examine the possibilities of implementing a
digital envelope scheme (i.e. where the message is encrypted
with a message key which is in turn encrypted with the keys
of the intended recipients, and both the encrypted message
and the encrypted keys are posted together) based on public
key cryptography. Discoverability can also be an issue with
certain service providers and/or countries; we will certainly
consider implementing steganography besides cryptography
with the aim of making the operation of our software com-

pletely impossible to discover by unauthorised third parties.
However, we emphasise that such an implementation must
retain the key merits of the current version of BlogCrypt, and
must not make the solution impractical.

REFERENCES

[1] S. Guha, K. Tang, and P. Francis, “NOYB: privacy in online
social networks,” Proc. of the first workshop on Online social
networks, August 2008., pp- 49-54,
doi:10.1145/1397735.1397747.

[2] G. Gulyas, R. Schulcz, and S. Imre, “Comprehensive analysis
of web privacy and anonymous web browsers: are next
generation services based on collaborative filtering?”, Joint
SPACE and TIME International Workshops 2008,
Trondheim, Norway, June 2008.

[3] A. Narayanan and V. Shmatikov, “De-anonymizing social
networks,” Proc. 30th IEEE Symposium on Security and
Privacy, IEEE Press, March 2009, pp. 173-187,
doi:10.1109/SP.2009.22.

[4] R. Pitofsky, S. F. Anthony, M. W. Thompson, O. Swindle,
and T. B. Leary. Online profiling: a report to Congress. June
2000.

[5] B. Berendt, O. Giinther, and S. Spiekermann. “Privacy in e-
commerce: stated preferences vs. actual behavior,”
Communications of the ACM, vol. 48, issue 4, April 2005,
pp. 101-106, doi:10.1145/1053291.1053295.

[6] A. Soltani, S. Canty, Q. Mayo, L. Thomas, and C. J.
Hoofnagle, “Flash cookies and privacy,” August 2009,
Available at SSRN: http://ssrn.com/abstract=1446862.

[7] Privacy policy | Facebook,
http://web.archive. 0r;2/web/200807 19134042/http://www.face
book.com/policy.php, retrieved on January 29fli 2010.

[8] A. Kobsa, “Privacy-enhanced web personalization,” P.
Brusilovsky, A. Kobsa, and W. Nejdl (Eds.): The Adaptive
Web, LNCS 4321, pp. 628-670, 2007. Springer-Verlag Berlin
Heidelberg 2007.

[9] C. Diaz, C. Troncoso, and A. Serjantov, “On the impact of
social network profiling on anonymity,” N. Borisov and I.
Goldberg (Eds.): PETS 2008, LNCS 5134, pp. 44-62, 2008.

[10] M. M. Lucas and N. Borisov, “FlyByNight: mitigating the
privacy risks of social networking,” Proc. of the 7th ACM
workshop on Privacy in the electronic society, October 2008,
pp. 1-8, doi:10.1145/1456403.1456405.

[11] A. Tootoonchian, K. K. Gollu, S. Saroiu, Y. Ganjali, A
Ganjali, and A. Wolman, “Lockr: social access control for
Web 2.0.,” Proc. of the first workshop on Online social
networks, August 2008, Pp- 4348, doi:
10.1145/1397735.1397746.

[12] W. Luo, Q. Xie, and U. Hengartner, “FaceCloak: an
architecture for user privacy on social networking sites,” Proc.
2009 International Conference on Computational Science and
Engineering, IEEE Press, August 2009, pp. 26-33, doi:
10.1109/CSE.2009.387.

[13] B. Schneier. Applied Cryptography, John Wiley & Sons, Inc.,
United States of America, 1996.

[14] F. Beato, M. Kohlweiss, and K. Wouters. Enforcing access
control in social network sites. Katholieke Universiteit
Leuven, Belgium, 2009.

[15] FireGPG — Welcome to the official website of FlreGPG'
http://getfiregpg.org/s/home, retrieved on February 19", 2010.

[16] BlogCrypt, http://pet-portal.eu/blogerypt/download.html,
retrieved on February 207, 2010.

[17] pidCrypt — pidder’s JavaScript

https://www.pidder.com/pidcrypt/,
2010

crypto libraraﬁ
retrieved on April 107,

