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Abstract—Service providers of social network based services 

release their sanitized graph structure for third parties (e.g., 

business partners) from time to time. However, as these 

releases contain valuable information additionally to what is 

publicly available in the network, these may be targeted by re-

identification attacks, i.e., where an attacker tries to recover 

the identities of the nodes that were removed during the 

sanitization process. One powerful type of these, called 

structural re-identification attacks consider only structural 

properties, and work according to a specific strategy: first they 

re-identify some nodes by their globally unique properties, and 

then in an optional second phase, nodes related to these are re-

identified by their locally unique properties. Global re-

identifiability or global node anonymity is a well studied 

concept, however, node anonymity for local re-identification 

has not yet been analyzed. 

Therefore in this paper, after discussing the related literature 

on anonymity and re-identification, we introduce the novel 

term of Local Topological Anonymity (LTA), which describes 

the resistant power of a node against local re-identification 

attacks, or, in other words, indicates how well the node is 

structurally hidden in her neighborhood. Regarding these 

attacks in the literature, we propose three measure variants of 

LTA based on structural similarity measures, and evaluate 

them by visual inspection and simulation in multiple networks. 

We show that one of the proposed measures provides good 

prediction on local node re-identifiability as there is correlation 

between the LTA values and the re-identification statistics 

provided by the state-of-the-art algorithm. 
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I.  INTRODUCTION 

Social network-based services play an essential part in 
the everyday life of many. One common feature of these 
services is that they all have an underlying graph structure, 
where nodes and edges can have different interpretations 
depending on the type of the service. For instance, in case of 
an online social networking service, a user can create a 
profile for herself (i.e., a node), and mark other users as her 
acquaintances (i.e., creating edges). Some services do not 
reveal directly the graph structure beneath them, though they 
should be considered social networks similarly, as in the case 
of mobile phone use or e-mail correspondence. 
These services may be valuable sources of information 

for several related parties, such as application developers, 
researchers, or business partners. Therefore, if the graph 
structure of such a service is released in anonymized form 

but with additional private information, it might be in the 
interest of a related party (who is now considered as an 
attacker since she violates user privacy) to re-identify users 
in the anonymized data set. Additionally, users may create 
instances in numerous services in parallel, and the attacker 
may try to link related instances. In both cases, the attacker 
builds the de-anonymization attack on his a priori knowledge 
(or auxiliary information), which can be some properties of 
the targeted users or even partial crawls of networks. 
However, de-anonymization is not a trivial task, as user 

instances could be published with differing or contradictory 
profile information under unrelated identifiers. In order to 
avoid false identification, it has been shown that structural 
properties can be used as alternative source of correlation [1-
6], which methods are called structural re-identification or 
de-anonymization attacks. By considering the extent of 
graph structure modification prior to sanitization, re-
identification attacks can be categorized as active [1] or 
passive [2-6]. In active attacks, the malicious party modifies 
the network structure to find the specific injected subgraph 
(and the nodes it is connected to), while passive attacks use 
auxiliary information solely. For structural passive re-
identification attacks, auxiliary information can be degree 
values of the node’s neighborhood [3], the structure of the 
neighborhood [4], or another graph that overlaps with the 
sanitized one [5, 6]. 
Concerning the strategy of the attack, re-identification 

can be carried out in two sequential phases: the global and 
the local re-identification phases (also called seed 
identification and propagation, respectively in [5, 6]). In the 
first phase, nodes (or subgraphs) with globally unique 
structural properties are re-identified, and after the 
appropriate number of nodes are de-anonymized, the second 
phase can be started. In this phase, nodes connected to 

 
Figure 1. The perturbed, anonymized graph to be de-anonymized (right) 
and the attacker knowledge crawled from another service (left). 



already re-identified nodes are being analyzed, and the ones 
with locally outstanding structural properties are re-
identified. 
For example, an attacker tries to de-anonymize users 

based on their degree values in a sanitized graph, assuming 
her inputs are as it is depicted on Fig. 1. Regarding global re-
identification, in the sanitized graph nodes form anonymity 
sets {4, 5, 8}, {6, 1}, {7, 2}, {3}, so the attacker who is 
looking for Harry, cannot re-identify him directly from {6, 
1}. Therefore, she starts with global re-identification, and de-
anonymizes node 3 as Dave. Then she proceeds with local 
re-identification, as she knows that Harry is connected to 
Dave and his degree value is 2, therefore she re-identifies 
node 1 as Harry, from the candidate set of {1, 4, 5, 7, 8}, i.e., 
local nodes around re-identified node 3. 
Most structural de-anonymization techniques only 

implement the global re-identification phase [1-4], limiting 
their success rate to small scales, as it is not computationally 
feasible to de-anonymize hundreds of thousands of nodes 
this way. However, it has been shown that adding the second 
phase opens the way to efficient large-scale re-identification 
[5, 6]. Similarly as in the previous example, these attacks use 
two overlapping graphs as their input, a sanitized graph as 
their target (i.e., the target graph), and an auxiliary graph 
containing identifying information (i.e., the source graph), 
and they flag a target node as re-identified if it is assigned to 
a source node. 
In this paper, our focus is on the second, local re-

identification phase, and as our main contribution, we 
introduce a novel anonymity measure called Local 
Topological Anonymity (LTA) for this phase, expressing the 
node’s resistance level against local re-identification 
techniques. The LTA measure is beneficial for users to apply 
privacy-enhancing software to establish their privacy status 
more accurately than simply considering their global 
structural re-identifiability (which app can also suggest 
making modifications in their relationships to achieve 
stronger privacy); by measuring their level of discoverability 
against the state-of-the-art structural re-identification attacks, 
i.e., ones implementing a local re-identification phase. In 
addition, the LTA gives a fast to calculate a posteriori 
anonymity measure, and it requires inputs that can be 
reasonably assumed to be available for users in most 
services: the neighbors and neighbors of neighbors of nodes. 
Besides, the LTA measure also allows data providers and 

attackers to estimate the possible success of attacks; e.g., in 
deciding whether a dataset (a network graph) is ready for 
release or needs modification (e.g., low median LTA value), 
or worth attacking. In case of particular nodes that cannot be 
identified globally, LTA values also offer the possibility to 
check prior the release or the attack. Additionally, an 
attacker can calculate the LTA values of multiple users to 
locate anonymity and similarity sets, and check whether 
certain users are part of them or not. In this paper we focus 
on the anonymity measure of nodes, and leave the detailed 
analysis of measures calculating an LTA value of the entire 
network for future work. 
The paper is structured as follows. In Section II, we 

discuss the related literature of structural anonymity and re-

identification. In Section III, we introduce the concept of 
LTA, discuss the related theoretical foundations, and propose 
three variants of LTA measures. We present the evaluation 
of the measure afterwards in Section IV, first by visually 
comparing the results of the measures given in small 
networks, and then by simulation in larger networks. Finally, 
in Section V, we conclude our work and discuss issues for 
future work. 

II. ANONYMITY IN SOCIAL NETWORKS 

In social networks, anonymity can be characterized both 
for the whole network, and for a single node (or for a set of 
nodes). Our work focuses on node anonymity, but the work 
of Sing and Zhan is a good example for the prior: they define 
a graph structural measure, called topological anonymity [7]. 
Their measure describes variance of patterns in the complete 
graph with a single, normalized real number, based on node 
degree anonymity sets: the output value incorporates the 
variance of the clustering coefficients of the nodes in the 
sufficiently large sets. Instead of identity disclosure, their 
work concerns link disclosure, i.e., when an attacker is 
interested in the presence or absence of an edge between 
certain nodes. 
Related to node anonymity, but before the research of 

networks and re-identification attacks, the term structural 
equivalence appeared in sociology [8]. Although based on 
similar principles, structural equivalence is too rigid within 
the current context: for structural re-identification two nodes 
having the same in- and out degree values can be globally 
undistinguishable, while considered structurally equivalent if 
they connect to the same neighbors with their incoming and 
outgoing edges [8]. Additionally to structural equivalence, 
nodes can be compared structurally in a more sophisticated 
way with similarity measures. These measures originate 
from other areas of science, but are also used in social 
networks for structural comparison of nodes in 
recommendation systems [9] and in re-identification 
techniques, e.g., cosine similarity in the second phases of the 
algorithms in [5, 6]. 
Practical structural node anonymity measures are 

reflecting the node’s hiding ability against certain re-
identification schemes, and are defined accordingly. Most of 
such measures are based on structural uniqueness or 
similarity measures, e.g., a node is considered anonymous 
considering its surrounding subgraph if there are a number of 
equivalent or similar coexisting facsimiles present in the 
graph, where their number may be a limit to count these 
similar structures to be an anonymity set [2-4]. 
Several variants of global re-identification techniques are 

derived from the concept of k-anonymity [10]. Zhou and Pei 
define that a node is k-anonymous if there are at least (k-1) 
other nodes with a similar neighborhood [4] (including 
adjacent nodes only). Liu and Terzi define k-degree 
anonymity similarly: a node is k-degree anonymous, if there 
are at least (k-1) other nodes with the same degree values in 
the network [2]. Hey et al. define k-candidate anonymity that 
relates anonymity of a node to the number of its mapping 
candidates [3], and give the analysis of three different types 
of global re-identification attacks: vertex refinement queries 



(a node is identified by the degree values of its neighbors, or 
neighbors of neighbors), subgraph queries (a node is 
identified by a surrounding subgraph described by the 
implied edges), hub fingerprint queries (a node is identified 
by its relation to specified hub nodes). 
Structural node anonymity is not explicitly measured in 

all related works. Backstrom et al. present global re-
identification phases (an active and a semi-active) that 
attempt to form a unique subgraph in the graph prior to 
anonymization [1]. In their work the structural uniquness 
(and identifiability) of the injected subgraph is controlled by 
the malicious third party, whose goal is to create a unique, 
but not trivially outstanding structure. Narayanan and 
Shmatikov use a uniqueness criterion for 4-cliques in the 
first phase of their passive algorithm in [5], and cliques being 
similar enough are considered to be forming an anonymity 
set (although clique uniqueness is only considered). 
Above mentioned identification techniques consider only 

global structural uniqueness during the re-identification 
process. As a result, these techniques are only capable to re-
identify the nodes in the structure that the algorithm is 
looking for (along with the connected nodes), and therefore 
lack the possibility of large-scale re-identification. As a 
solution, a local re-identification algorithm was introduced 
by Narayanan and Shmatikov [5]: after de-anonymizing 
some nodes by their globally unique structural properties, 
nodes in their neighborhood are de-anonymized by their 
structural properties that make them locally outstanding and 
unique. In their work they de-anonymized successfully 
30.8% of the co-existing nodes in the graphs crawled from of 
two different services (Flickr and Twitter). In a second 
experiment where both graphs were obtained from the same 
service (but at different times), an even higher re-
identification rate was achieved with a different global and a 
modified (but conceptually similar) local re-identification 
phase [6]. In both cases, the local re-identification phase 
considers only the 2-neighborhood of a node while trying to 
re-identify new nodes. 

III. LOCAL TOPOLOGICAL ANONYMITY 

To the best of our knowledge no work in the literature 
has yet considered measuring structural anonymity regarding 
the local re-identification phase. Therefore we introduce 
Local Topological Anonymity (LTA), which represents the 
level of resistance of a node against attacks considering local 
structural information only, or, in other words, describes how 
efficiently a node is hidden in its neighborhood regarding her 
structural properties locally. 
In order to describe LTA measure in more details, we 

take a look into the propagation phases of attacks in [5, 6] to 
clarify their (common) basic principles. Both phases are 
round based, and in each round the algorithm starts with a set 
of already re-identified nodes, and tries to extend this set by 
de-anonymizing new nodes. In each round the algorithm 
iterates through all source nodes: a source node’s re-
identified neighbors assigned pairs (in the target graph) are 
selected, and their neighbors are the possible candidates of 
the source node. Then, the source node and the candidate 
nodes are compared by their structural properties, and a score 

is assigned for each target candidate. If there is an 
outstanding candidate score, the corresponding target node is 
assigned to the source node, and considered to be re-
identified. Additionally, as re-identification spreads across 
the network, already identified nodes are revisited to perform 
corrections. 
The comparison is the most fundamental part of these 

algorithms: a source node can be re-identified successfully if 
it is present in the target graph, and the local structural 
properties of the source node and the corresponding target 
node are similar enough, and its score makes the target node 
more similar than others in its neighborhood (i.e., 
outstandingly unique). In our opinion, possible propagation 
phase algorithms appearing in the future will share these 
principles too (and may involve additional ones), and 
therefore we base the definition of LTA measures on the 
structural uniqueness of a node in her neighborhood. 

Definition 1. A Local Topological Anonymity measure is 
a function, denoted as ����∙�, which represents the hiding 
ability of a node in a social network graph against attacks 
considering only the structural properties of the node, within 
its d-neighborhood1. 
In this section, we discuss the theoretical basis of LTA 

measures, and propose three measure variants, which are 
evaluated in the following section. 

A. Theoretical Basis and Initial Tests 

The hiding ability of a node can also be interpreted based 
on its structural similarity to others in her neighborhood. In 
other words, if there are structurally similar nodes in its 
neighborhood, a node has a better chance for avoiding re-
identification. Furthermore, the more similar nodes there are, 
the higher are the chances. (Here, we consider undirected 
networks for the sake of simplicity, but the concept can be 
extended for directed networks also – we leave this issue as 
future work.) 
Therefore, as the basis of LTA measures, we propose 

similarity measures applied to the structural context. N.b. the 
similarity measure should be tailored for the structural 
property considered by the attacker, such as in the case of the 
example provided at the end of this section. For regular 
similarity measures (e.g., used for calculating the similarity 
of sets), there are several choose from, but the following 
rational considerations can help to filter out many of these: 

• Fast to calculate. Calculating a single LTA value 
may involve numerous similarity measurements 
(e.g., calculated for all neighbors of neighbors), 
making LTA calculation a costly operation in case of 
slow measures. 

• Not recursive. For similar reasons as above, 
recursive similarity measures can be costly too, and 
in addition, the complete graph may not be known at 
all times. 

                                                           
1 We consider LTA measures of 2-neighborhoods only, as � ≥ 3 
may be impractical because of typically small network 
diameters. 



• Positive values. Results derived from positive values 
can be interpreted and compared easier (e.g., when 
summing values). 

• Normalized values. Normalized values of different 
nodes can be compared easier, and in addition, the 
average of normalized values is also normalized. 

• Symmetric. The similarity value should not change 
when the order of the nodes is altered. 

Respecting these considerations, there are still multiple 
similarity measures to choose from; however, the cosine 
similarity (which fulfills them all) outstands for two reasons. 
First, in their research, Spertus et al. compared six distinct 
similarity measures on the Orkut social network database, 
and found cosine similarity to give the best results [9]. In 
their experiment, similarity of users was calculated based on 
their community subscriptions regarded as sets, which is 
quite similar to our current case, where a node (a user) can 
be regarded as a set of its neighbors, and two nodes can be 
compared accordingly. On the other hand, both in 
propagation phases of [5, 6] the comparison mechanisms are 
based on cosine similarity: the scores are derived from the 
cosine similarity of the source node and each of the target 
candidates. Therefore we choose cosine similarity, which is 
denoted in set notation as 


������� , ��� = ��� ∩ ���
�|��| ∙ ����

, 

where �� , ��  are nodes in the graph, and �� , ��  are the sets 
of their neighbors respectively. 
However, at the beginning of our empirical experiments, 

because of curiosity and for the sake of completeness, we 
compared some other measures to cosine similarity. 
Measures were tested with the ����  measure variant (see 
Section III.B for details), and some produced outputs 
relatively close to cosine similarity. Here we mention some 
of these alternatives; although this is not a closed list, and 
there might be several more alternative similarities to be 
chosen from. 
While Spertus et al. consider the Pearson similarity 

measure [8] to be inappropriate for the current use [9], and in 
addition it produced negative LTA values in our 
experiments, it seems to be a good alternative in larger 
networks (starting from around thousand nodes): the 
correlation with cosine similarity was almost perfect for all 
larger test networks, namely 99.8% and above (for the data 
sets see Section IV.A). 
For all test networks in all sizes, the Jaccard similarity 

[11] provided very close results to cosine similarity. Though 
some other measures also gave good results, their correlation 
degraded as the network sizes grew. This was the case for the 
L1-Norm similarity measure [9], the pointwise mutual-
information similarity measures [9], and the similarity 
measure with minimum normalization (called topological 
overlap in [12]). Interestingly, and against our expectations, 
the asymmetric Salton IDF similarity measure [13] had 
convincing results also like the latter ones. 

B. Proposals for LTA Measures 

In the proposed LTA measures, the similarity of a node 
to its 2-neighborhood is based on the similarities to her 
neighbors of neighbors (in case of triangles, both neighbor 
nodes are considered as neighbor of neighbors, too). As a 
basis, the sum of similarities between �� and all neighbors of 
neighbors is calculated, but normalized differently for each 
variants. 
The first (and the simplest) measure variant, denoted as ��������, is simply calculated as the average similarity of 

node ��  and its neighbors of neighbors. While constructing �������� the goal was to penalize nodes with high degree 
values, thus the sum of similarities is normalized with the 
degree of ��. To cut back LTA values for one-degree nodes, 
the minimum value for normalization is 2 (during the visual 
comparison, it produced better results). The third measure, ��������  is based on �������� , but it penalizes nodes 
where node degrees in the set of the neighbors of neighbors 
vary greatly. 
Therefore, we define these variants of LTA measures as 

follows: 

�������� = � ������ , � �
���!�∀#$∈&'(

, (1) 

�������� = � ������ , � �
�)*�|��|, 2�∀#$∈&'(

, (2) 

�������� = � ������ , � �
���!� ∙ �)*�,-./�Δ��!�, 1�∀#$∈&'(

, (3) 

where �� denotes the set of neighbors, ��! denotes the set 
of neighbors of neighbors for node �� , ������ , � � stands for 
the similarity function between two nodes (cosine similarity 
in our experiments), and ,-./�Δ��!�  denotes the standard 
deviation of delta in degree values between ��  and members 
of ��!, i.e., Δ��! = 2∀� ∈ ��!:	�|��| − |� |�6. 
We remark that a node may be well hidden according to a 

given LTA measure, but it may be still vulnerable to global 
re-identification attacks. This should be considered in some 
cases, like for small networks, where brute-force global re-
identification attacks are feasible, and also for nodes 
connecting to unique subgraph structures formed by other 
participants (e.g., multiple hubs). Consequently, an LTA 
value assigned to a node should not be interpreted as a 
comprehensive overview of its anonymity status, but rather a 
complementary indicator regarding specific local re-
identification phase attacks. 

C. Example: Choosing a Similarity Measure and 

Calculating the LTA value 

Here, we give an example for calculating ����  for the 
example (source) network given in the introductory section, 
depicted on Fig. 1; although this network is great for a 
simple example, we emphasize that LTA measures are useful 
complementary indicators for larger networks, where global 
re-identification is not feasible.  



In the given example, the attacker uses node degree 
values for comparison, therefore we propose calculating the 
difference between degree values as a similarity measure, as 

7��� , ��� =
max�|��|, ����� − ;|��| − ����;

max�|��|, ����� , 
where values are normalized for the ease of comparison. 
Based on this measure, ���� can be calculated for Alice as 
follows: 

�������� =
= 7���, ��� + 7���, �=� + 7���, �>� + 7���, �?�

4
= 0.33 + 0.33 + 1.0 + 0.5

4 = 0.54, 
and their local structural anonymity status can be calculated 
accordingly for other nodes, too. 

IV. ANALYSIS OF THE LTA VARIANTS 

We evaluated the proposed LTA measures by checking 
the correlation between LTA values and re-identification 
rates by the simulation of the propagation phase. Although 
the propagation phase is meant for larger networks, we also 
checked the measures by visual inspection in small networks. 

A. The Datasets 

For the tests in larger networks, we used graphs that had 
at least a thousand nodes, as we found that size to be a 
rational compromise between data size (thus simulation 
runtime) and ones giving lifelike results for LTA measure 
distributions and simulation results. The main data sources2 
were the Epinions who-trust-who network (collected in 
2003), and the Wikipedia vote network (collected until 
January of 2008), the Slashdot network (collected in 
February 2009). For the comparison of results, an additional 
LiveJournal graph containing approx. half million nodes 
were crawled at the end of 2010 (at our dept.). We used these 
networks to create test data for the simulations by exporting 
subgraphs of the desired sizes with breadth-first search, 
where the resulting graph sizes were optimized for 
simulation runtime (see Table I). 
The final form of our test data were derived by applying 

the perturbation strategy proposed by Narayanan and 
Shmatikov [5] to these exports, which creates two graphs 
with the desired node and edge overlap factors (denoted 
respectively as D&  and D= ) without adding new nodes or 
edges, therefore results in realistic source and target graphs. 
We measured the strength of the overlap in the number of 
coexistent 4-cliques, as it limits the maximal strength of the 
simulated adversary: propagation phase simulations were 
initialized with random disjoint seeds chosen from those. We 
ran the perturbation algorithm on the six graphs to create all 
test datasets. Ten of the datasets were created from WV-
1000 and EP-1000 with differing clique overlaps to analyze 
the success rate and other properties of the propagation phase 
for different overlap factors (see Table II). 

                                                           
2 SNAP Large Networks: http://snap.stanford.edu/data/index.html 

B. Visual Comparison in Small Networks 

We expected LTA measures to provide credible scores in 
small graphs, too (e.g., some manually constructed, and other 
small graphs available for download3). Thus we calculated 
the measures for small networks, and compared them 
visually with expectations such as: 

• Anonymity sets. Nodes having exactly the same 
neighbors (i.e., structurally indistinguishable nodes) 
should get the same LTA values, that are 
significantly higher than the average in the. 

• Similarity sets. Nodes having a relatively significant 
overlap (to their degree) in their neighborhood (i.e., 
structurally similar nodes) should get values close to 
each other, and values should be higher than the 
average. 

• Nodes that are structurally unique in their 
neighborhood (e.g., local hubs) should get lower 
values than the average. 

Measure ����  produced the most credible results in 
small networks in contrast to the results in larger networks 
(see details later). As displayed for the undirected version of 
Zachary’s karate network (see top of Fig. 2), ����  
highlighted multiple anonymity sets, from which the largest 
is denoted as �E, and a similarity set is also visible, marked 
as E . As expected, ����  values are lower for structurally 
unique nodes, such as for peripheral nodes or hub nodes. 
Measures ���� and ����  most notably differ for hubs. For 

                                                           
3 Network data: http://www-personal.umich.edu/~mejn/netdata/ 

TABLE I.  INITIAL DATASETS AND THEIR PARAMETERS. 

Network Nodes Edges Density Diam. Avg. path 
length 

EP-1000 1,000 29,509 0.0591 4 2.1746 

WV-1000 910 9,407 0.0227 5 2.7708 

SD-1000 1,104 10,348 0.0170 5 2.4295 

LJ-1000 1,033 10,521 0.0197 4 2.5608 

LJ-10K 10,056 231,416 0.0046 6 2.8291 

WV-Full 7,115 100,762 0.0040 7 3.2475 

TABLE II.  DERIVED DATA SETS FOR THE EXPERIMENTS. 

Variant FV FE Clique 

overlap 

WV-1000vA 0.5 0.60 117 
WV-1000vB 0.5 0.75 469  
WV-1000vC 0.5 0.90 1,403  
WV-1000vD 0.4 0.75 115  
WV-1000vE 0.6 0.75 1,264  
EP-1000vA 0.4 0.45 1,536  
EP-1000vB 0.4 0.60 2,093  
EP-1000vC 0.4 0.75 12,271  
EP-1000vD 0.5 0.60 10,495  
EP-1000vE 0.6 0.60 27,227  
SD-1000 0.5 0.85 1,844 
LJ-1000 0.5 0.90 2,085 
LJ-10K 0.4 0.60 2,422 
WV-Full 0.5 0.6 4,699 

 



both measures, the node with the highest degree received the 
highest score in a small test network (see bottom of Fig. 2), 
higher than the largest anonymity sets. Furthermore, the two 
hub nodes are scored higher than nodes in the anonymity sets 
related to them. As the propagation phase is not designed for 
small networks, the simulation evaluation determines the real 
usefulness of the variants; however, all LTA variants gave 
appropriate scores for nodes in anonymity or similarity sets. 

C. Choosing the Proper Algorithm and Settings for 

Simulation 

Before the evaluation, we had to choose from the 
propagation phases in [5] and [6] for the simulations. First, 
there is a major difference in how the algorithms are used: 
the [5] was run on two graphs of different services, while the 
[6] was run on two snapshots of the same graph. Thus, we 
consider the [5] propagation phase to be more generic, and 
during simulations it seemed to be also more fault tolerant 
(which is not surprising according to the original use-cases). 
Although we could achieve similar results with both 
algorithms, the [5] propagation phase turned out to be easier 
to control (as it has less parameters), and parameters were 
less data dependent, too. As a result, we had chosen the 
propagation phase algorithm in [5] for our simulations. 
In the simulations, we intend to measure the success rate 

for each node; however, we observed that the success rate 
depends heavily on further important settings, not just the 
algorithm itself. The authors mention that large-scale 
propagation depends on the seed size [5]; we confirmed their 
statement with simulations, and – in accordance with their 
results – we measured two thresholds for the seed set size 
(i.e., the number of 4-cliques): a lower where notable 
propagation really starts, and an upper after which additional 

seeds will not lead to significantly wider re-identification. 
Therefore, in the simulations we tried to use the largest 
number of seeds for initializing the algorithm, although the 
seed set size is limited by the number of overlapping cliques 
and networks structure, which is eventually assigned by the 
overlap factors of the nodes and edges. 
As another interesting result, we found that the 

propagation phase is quite sensitive for seed locations. Not 
surprisingly, when a single 4-clique is used as a seed, the 
reachability horizon of the algorithm varies greatly for 
different seed locations, while the algorithm output is more 
or less deterministic. However, for an attacker using multiple 
seeds, seed location is still a problem: in our tests, it proved 
to be easier to achieve large-scale propagation with randomly 
selected seeds or with seeds constructed of low degree 
nodes; when all seed nodes had higher degree values, 
simulation achieved worse propagation results. Thus for 
initializing propagation, we used random seeds, selected 
from arbitrary parts of the network. (Although in reality, an 
attacker may only have high degree seeds, which is reckoned 
to be weaker than the simulated one leading to results similar 
in shape, but lower re-identification rates for most nodes.) 

D. Simulation Details and Interpreting Results 

As mentioned before, we evaluated the LTA measures by 
checking the correlation between the LTA values and re-
identification statistics. Initially, we calculated LTA values 
for all tests network variants, and executed the [5] 
propagation phase multiple times. After trying various 
settings we found that 10 rounds of simulation gives a good 
average of re-identification rates (for these datasets). 
In each round, a network dependent number of coexistent 

4-cliques are selected randomly. To find a clique, first an 
arbitrary node is selected, and then a coexistent clique is 
chosen from its neighborhood. Afterwards, the simulation of 
the propagation phase initialized with the selected seeds. 
During the simulation, each node is assigned a re-
identification score: if the node is re-identified successfully 
its score is increased by one (seeds are excluded from 
scoring), and in case of false re-identification it is decreased, 
otherwise the score is not changed. Then the re-identification 
statistics for the coexistent nodes are analyzed, and for 
comparison the results are plotted on XY graphs, and 
average of the re-identification statistics on line graphs 
(averages calculated for 50 LTA intervals), where the scores 
are ordered according to the given LTA measure. 
For checking the correctness of each measure, we check 

the correlation between re-identification scores and LTA 
values. High (and negative) correlation can be observed if 
LTA values order re-identification scores in a decreasing 
order, or if the proportion of high and low re-identification 
values change in favor of low values, as LTA increases. 
However, it turned out that the prior is less frequent, as a 
node typically has a maximum or a minimum re-
identification rate, not between (e.g., 83.9% of nodes fall in 
these cases for LJ-10K). 

 
Figure 2. Examples for LTA values in small networks. Nodes are 
colored in accordance with their relative scores in the network, and 

absolute scores are displayed as numbers. 



E. Evaluation by Simulation 

In Fig. 4 we give two typical examples for the proposed 
LTA measures for EP-1000vC (9-10 disjoint seeds used for 
simulation) and WV-1000vC (7 seeds), and unordered 
results are also presented for comparison (i.e., re-
identification rate ordered by node id). At first sight, 
correlation with ���� seems to be the best, other measures 
have some handicaps. For ���� , due to its heavy tailed 
distribution, there are significantly larger number of low 
LTA values, thus most of the results fall in the lower parts of 
the domain. Therefore ����  has more spikes for higher 
LTA values, since there are less nodes with low re-
identifications scores, which could balance it in the average 
(see (1) on Fig. 4); this phenomenon occurred in most of the 
cases. Measure ����  produced apparently better results than ����  (but not if we consider correlation), even seemingly 
good correlation similarly as ����, but not in all cases. As 
shown for EP-1000vC, it may start with low values (see (2) 
on Fig. 4), and the tail of the average function is not always 
descending (see (3) on Fig. 4). 
For comparison, we also calculated the Pearson 

correlation coefficient for each test (see Fig. 3), and the 
average correlation values (for all networks) were −0.421,−0.344,−0.269, respectively for the proposed 
measures. The average of the highest achievable correlation 
was −0.814 (i.e., perfect ordering regarding the simulation 
results). Regarding these values, and the previously 
discussed characteristics, we had chosen ����  as the most 
appropriate measure (although ���� produced slightly better 
results in a few cases, it was less accurate in total), according 
to the results [5] propagation phase. 
On Fig. 5 we give further examples of ����  and re-

identification statistics for networks SD-1000vA (8 seeds), 
LJ-1000vA (11 seeds), and LJ-10KvA (30 seeds). As an 
interesting finding, it can be seen that it was not always 
possible to reach large-scale re-identification by simply 
using the highest number of available seeds; however, in 
other cases where it could be achieved, LTA values and re-
identification statistics were more balanced, and the average 
function had a descending tail, similarly as seen on Fig. 4. 
As displayed on the XY graphs and on the right-hand 

side of Fig. 5, re-identification scores significantly deviate 
from the average. This is for the reason we mentioned 
earlier: not that the re-identification scores are ordered in a 
descending manner, but for the proportion of positive and 
zero scores changing for each higher LTA intervals during 
the average calculation (in favor of zero scores; there is only 
a minority of negative scores). This is because if a node can 
be found by the algorithm, it is likely to be found in all 
simulation rounds, even for high LTA values. For instance, 
as in the re-identification statistics of LJ-10K, the number of 
nodes that were found zero and 10 times greatly 
outnumbered all other nodes (with proportions of 23.77% 
and 60.13% respectively). Furthermore, only the 1.29% of 
all coexisting nodes had negative re-identification scores, 
and only the remaining 14.81% of the nodes had a re-
identification score between 0 and 10. 

V. CONCLUSION AND FUTURE WORK 

In this paper, after discussing the related literature and 
concepts of structural anonymity, we proposed a novel term, 
called Local Topological Anonymity describing the 
anonymity status of a node regarding local re-identification 
attacks. For measuring this aspect of anonymity, we 
proposed three LTA variants, and evaluated these measures 
with simulation, and as a result, we proposed one of the 
measures, namely the ���� , that allows the most accurate 
anonymity status estimation with respect to the state-of-the-
art propagation phase algorithms. During the simulations, the ����  measure had the highest correlation with node re-
identification statistics in average. Our novel measure is 
useful for the user measuring her anonymity status more 
accurately, and it may also be useful for an attacker or a data 
publisher to establish the possible success rate of an attack 
against certain nodes. 
We mentioned some issues in the paper left for future 

work, such as creating a measure for providing estimation of 
the complete resistance level of a network, or to extend the 
currently proposed LTA measures for directed networks 
also. We also find the concept of a combined measure 
interesting, where the global and local re-identifiability of a 
node could be combined in a single indicator value (where 
one of the original components could be the LTA measure 
output). The combined measure could provide a 
comprehensive estimation describing the overall anonymity 
status of a node, for instance, regarding both a specified pair 
of seed identification and a propagation phase attacks. In 
addition regarding Fig. 3, there is also room for improving 
the currently analyzed measures, for instance by adding 
heuristics to the algorithm to achieve higher correlation. 
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Figure 3. Pearson correlation coefficient values for different LTA 
measures in different networks.  
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Figure 4. Examples of simulation results for the comparison of LTA variants. 

 
Figure 5. Simulation results on other datasets with LTAA. 


