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Abstract—Most of today’s online social networking services 

have a flat structure, i.e., these services only allow a single choice 

of connection type (usually called “friends”) for their users, and 

lack the functionality of identity separation. However, identity 

partitioning allows users to group their contacts, to share 

different or even diverse information, and therefore offer privacy 

protection against third parties looking to re-identify users in 

sanitized social graph data. In this paper, we analyze the 

protective strength of identity separation against these types of 

structural de-anonymization attacks by introducing a statistical 

user behavior model and defining attack failure probability 

formally. It turns out from simulations and the parameter 

analysis of the model that in case of even a relatively small 

number of users applying identity separation, an attacker is 

likely to fail. 

Index Terms—De-anonymization; Identity Separation; Social 

Network; Seed Identification. 

 

I. INTRODUCTION 

social network (SN) is a web of connections between 
certain individuals (or organizations) in the society, who 

are tied together by one or more specific relations or attributes, 
e.g., the trails of e-mails or phone calls altogether. The group 
of social networks includes social networking services (SNS), 
which allow individuals and other entities such as 
organizations to form links. These services have an underlying 
social network graph, where vertices represent individuals or 
registered users, and edges indicate relationships, connections 
or other kinds of links. Content on most SNSes is based on 
user-generated information, e.g., status messages, family 
photos and videos, and hyperlinks to other websites. Such 
services may also include the functionality of creating and 
joining groups of interest, and rating other users’ content – a 
simple concept for which being Facebook’s likes. 

A social network is a rich information base for many 
branches of science. Sociologists, for instance, may find out 
valuable information about the structure of the society, group 
behavior, etc., by analyzing the anonymized export of the 
database, which can be considered a graph with labels on the 
vertices and edges, where vertices represent members of the 
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network, and edges connection between them. Such an export 
may either be obtained through a request to the operator of the 
SNS, or by manually collecting the information through the 
use of a so-called web crawler. 

Anonymization is not a trivial task; merely stripping the 
names from the database has proven to be insufficient [19]. An 
attacker may embark on restoring the deleted identifiers for 
various reasons, e.g., for obtaining previously unknown or 
unconfirmed information about a user for improving the 
efficiency of illegal or otherwise malicious practices, such as 
phishing. Research in the field has made such attacks against 
social networks readily available, and has proven that they do 
not have a prohibitively high complexity [20]. 

As a means of thwarting de-anonymization attempts, we 
propose to use identity separation in social networks [12], a 
concept for selectively concealing and revealing certain pieces 
of information in specific contexts, which is called the 
technique of Partial Identities [6] or Role-Based Privacy [12]. 
For instance, one may want to separate her colleagues from 
her friends (in the stricter sense of the word) on a SNS, by 
effectively managing separate contact lists for separate 
identities [11]. This concept, since it harmonizes with our real-
life information sharing habits [2], is now available as built-in 
function, in a novel SNS, called Google+2. 

In this paper, we analyze the effectiveness of identity 
separation against de-anonymization attacks in case of a 
cooperative service provider (i.e., who leaves identities 
separated in the export; the analysis of the uncooperative 
service provider is considered as future work). These attacks 
can be categorized as active, semi-passive and passive 
methods. Active attacks allow creating new nodes in the social 
network, and adding edges with the rest before obtaining the 
anonymized export, while semi-passive attacks only allow 
creating additional edges without adding vertices [4]. Passive 
attacks rely on the unmodified content in the database, but use 
auxiliary data sources to de-anonymize users [20], [21]. 

Our work focuses on the state-of-the-art passive attack in 
[20]. Although the work described in [21] is more recent, but 
that attack is not proven to be generic: while the attack in [20] 
is executed on two totally different networks, namely Flickr 
and Twitter3, the attack in [21] is executed on two snapshots 
of the same (Flickr) network. The latter attack has two 
significant disadvantages, since it tries to match the top � 
nodes in the two networks: first, due to its characteristics, it 
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could not work for another set of nodes with lower degrees, 
and second, matching the top � nodes in different networks 
may involve some difficulties (see Section II.A). 

Therefore, as our main contribution in this paper, we have 
analyzed the success rate of the state-of-the-art attack from a 
user’s point of view by calculating failure probability for a 
single vertex of the anonymized export. To assure the 
generality of our analysis – and since user behavior is yet 
unknown – we have defined a generic attack-independent 
statistical model for user behavior regarding identity 
separation and edge anonymization. 

The paper is structured as follows. In Section II, we review 
the related literature on the main areas involved by our 
research: re-identification in anonymized social network 
graphs, identity separation and anonymity in social networks. 
In Section III, a novel user behavior model is introduced for 
identity separation, which incorporates multiple behavior 
types dependent on the possibilities of the user. The effects of 
identity separation on active attacks are discussed in Section 
IV, and in Section V, the analysis of passive de-anonymization 
attacks is presented. Finally, in Section VI, we conclude our 
work. 

II. LITERATURE SURVEY 

In this section, we briefly discuss the literature most related 
to our work. First by including the most relevant de-
anonymization attacks, and also discuss the literature of 
identity separation for social networks. Finally, we present a 
method for applying anonymity  in social networks, and for 
exporting such data. 

A. De-anonymization Attacks for Social Networks 

The first de-anonymization algorithms were active (and 
semi-passive) attacks [4]. As discussed in the introductory 
section, attacks of this type intend to insert a hidden but 
unique pattern into the graph by systematically adding vertices 
to the social network graph, and trying to create edges 
between some targeted users, before obtaining the anonymized 
export. The adversary may then attempt to recognize this 
hidden structure, and infer information about the selected 
users under attack (i.e., which are connected to the structure), 
including their contacts and (if provided along with the graph) 
their profiles. 

However, since active attacks intrinsically assume that the 
adversary is able to modify the network before creating the 
export, they inherently have some weak spots. For instance, in 
case the modification is possible, the operator of a major 
social networking website is likely to attempt to find the fake 
user accounts, and delete them. Since real users of the social 
network do not have a meaningful motive to link back to the 
malicious nodes (i.e., confirm friend requests), the service 
provider will find that edges linked to these vertices are 
mostly going outwards from, and seldom coming inwards to 
them. The computational complexity of active attacks is likely 
to be small [4]. 

Passive attacks, while computationally more expensive, do 
not require the modification of the social network graph, and 

therefore the service provider cannot proceed with reactive 
measures, only with proactive ones. This makes the attack 
more difficult to counter, and also more versatile in terms of 
area of application (i.e., the same concept can be applied to 
multiple kinds of social networks). Furthermore, these attacks 
are capable of extending to the entire network, or at least a 
significantly large part thereof. 

The state-of-the-art passive attack described in [20] maps 
the corresponding nodes of two graphs (i.e., accounts of the 
same person) solely based on structural information. The 
adversary defines an error parameter � to control the 
acceptance of a mapping, i.e., if the algorithm should be more 
lenient and possibly accept erroneous mappings, or be stricter 
and be prone to rejecting correct ones. 
The algorithm executes in two phases: seed identification and 
propagation. In the first phase, the attacker tries to find in the 
anonymized graph the counterpart of a unique �-clique present 
in the source graph (the algorithm in [20] uses 4-cliques, to be 
exact). First, for a unique �-clique in the source graph, the 
attacker computes the degree of each vertex and the number of 
common neighbors for each pair of nodes, then looks for 
similar �-cliques with similar values (within a factor of 1 ± �) in the target graph. The error factor is considered for 
mapping each vertex (in the case of degrees) and each pair of 
vertices (in the case of common neighbor counts). Structural 
modifications within the cliques are disallowed; identification 
fails if one or more edges are erased from the clique. 

In the second phase, the algorithm iteratively adds nodes to 
the mapping until there are unmapped vertices that have 
reasonably good mappings. If the attacker fails in the first 
phase, the second one is never run; therefore, we focused on 
analyzing the success rate of the attacker, but plan to analyze 
the effects of identity separation on this phase as future work. 
However, we expect that if the seed identification is not 
successful in general, then the second phase should fail, too. 

Narayanan et al. in [21] introduce a similar attack with a 
less rigid, non-pattern-based seed identification phase (the 
propagation phase is essentially the same). Instead of looking 
for several seeds, this attack tries to find matches of node pairs 
in the top � nodes of the two networks, and then starts the 
propagation phase from there. Matches are based on node 
degrees and common neighbor counts by applying cosine 
similarity for the pairs. 

However, this attacker algorithm does not seem to be 
generic. First, since degrees of nodes in the top � set differ the 
most in the whole network, this technique can not be applied 
to other set of � nodes with lower degrees: there would be too 
many similar nodes in the compared sets (e.g., see Fig. 1-2 in 
[21]). Second, for social networks with a similar purpose (e.g., 
Facebook4 and Google+), it may be right to assume that the 
top � nodes overlap, but in general, that should not be true. For 
instance, it is not very likely that accounts belonging to the 
same owners are the most popular on Flickr and on 
LiveJournal. 

Therefore, to the best of our knowledge, the [20] passive 
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attack is still the state-of-the-art attack that can be found in the 
literature. Comparison of attack types are summarized in 
Table 1. 

 

B. Identity Separation in Social Networks: a Desired and 

Privacy-Enhancing Feature 

We do not classify our social contacts on SNSes by default, 
as there is only one category: “friends”. However, this is 
normally not the way we, humans, classify our acquaintances 
[2]. We keep track of multiple groups of people we know from 
different “stages” of our life, e.g., school, workplace, and 
family, and interact with them in a disjoint fashion in terms of 
place and time [8]. If our offline disclosure of information 
works in a different way than an SNS, we will act in a 
different way online: we will likely self-censor ourselves, and, 
at least sometimes, disclose some content to unwanted 
audiences. 

This is a clear indication for the need of identity separation 
within social networks [11]; SNSes allowing users to share 
diverse information with different user groups (e.g., sharing 
different availability status with colleagues and friends) or to 
commit identity separation in some contexts (e.g., making 
political and private identities totally unlinkable). Such 
methods exist in the literature as the technique of Partial 
Identities [3], [5], [6], [10], [9], and Role-Based Privacy [24], 
[14], [15], [16], [18], [12]. Both allow users to publish diverse 
attributes under different pseudonyms. 

For the case where the consent of the SNS provider cannot 
be assumed, one can use cryptography to enforce identity 
separation on an existing SNS [22], [1] or implement the 
social network on a distributed, cryptographically secured 
architecture [7]. However, our current work focuses on the 
possibilities on the model issues, and not the cryptographic 
side of the problem. 

Google+ is the first to implement identity separation as a 
tool for privacy protection; the goal of this feature (namely 
Google Circles) is to allow proper audience selection for 
sharing content. Currently, this is not yet a complete solution, 
as it only works for content sharing, but there is only a single 
profile (flat structure). One important attribute of the Circles 
feature that it is mandatory. 

Similar, optionally available features exist in many services. 
For instance, in the Windows Live Messenger5, one can set 
invisible mode for each contact group separately, or in 
Facebook, friends can be sorted into groups, and content 
sharing can be done accordingly. Compared to the Google 
Circles, the biggest disadvantage of these features is that they 
 

5 http://explore.live.com/windows-live-messenger 

are optional, and therefore probably fewer users know about 
and use them. 

C. Anonymity, Pseudonymous Identifiers and Data Export 

Sanitization 

There are two types of identity separation. The simpler 
identity separation function is where you can sort your 
contacts into lists, and, for instance, post content for them 
separately. This is called internal identity separation [11]. The 
other means of separating identities – external separation – is 
either managing multiple profiles on the same SNS, or using 
multiple networks for different audiences (e.g., Facebook as 
our means of informal online presence, and LinkedIn6 as our 
formal one). 

Obviously, the user’s pseudonyms on different sites must 
not disclose that they belong to a single user [5]. It must be 
noted, too, that the internal separation functionality found on 
many SNSes is insufficient. For instance, Facebook does not 
allow hiding group memberships, implicitly exposing 
attributes of the user that she may have wanted to conceal 
[25]. 

Therefore, a social network supporting identity separation 
allows three levels of anonymity [12]: 

─ The weakest is pseudonymous identification (i.e., 
internal separation): the user is identified by a globally 
unique identifier (a pseudonym), and her identities can 
be linked through it. 

─ Unlinkable pseudonymity is a stronger level of 
anonymity (i.e., external separation), where the user may 
separate her identities by the means of multiple 
pseudonymous identifiers. These cannot be linked 
together, since content corresponding to an identity has 
its respective pseudonym as the originator. 

─ The strongest level is total anonymity, which allows the 
user to post content without any identifier linked to it, 
and therefore making it very hard to trace the 
information back to her. 

In our work, we assume a service provider that honors the 
above mentioned separation methods when creating the 
network export. The reasoning behind this is that if the 
attacker cannot reverse the separation, she cannot know that 
multiple nodes in an anonymized graph belong to one person, 
and therefore they should be mapped together to a vertex in 
the known graph. 

Transformation of a social network where the users can use 
identity separation and edge anonymization into a traditional 
social network graph is simple. Linkable nodes (i.e., those that 
use linkable pseudonymous identifiers) are merged, unlinkable 
nodes (i.e., those that use separate pseudonymous identifiers) 
are preserved as separate vertices, and anonymized edges are 
simply deleted. This way, all the aforementioned levels of 
anonymity in the privacy-enhancing social network model are 
reflected in the transformed graph. To sum it up, it can be seen 
that user behavior can greatly affect the structure of the 
exported social network graph. 
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TABLE 1. ATTACK TYPES AND ATTACKER CAPABILITIES. 

Data 

sources 
Passive 

Semi-

passive 
Active 

External data Use public data as auxiliary source 

Internal data 

- Modify profiles, connections 

- - 
Create new 
registrations 
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The original articles on passive attacks analyze scenarios 
where the source (or auxiliary) and target graphs were both 
regular social networks. In this paper we analyze a mixed 
scenario, where the source graph is a regular social network, 
and the target is one which allows identity separation. In this 
case, modeling user behavior is easy, since only the separation 
process needs to be approximated with a statistical model. 

We leave the analysis of the third type of attacks, namely 
that uses networks with identity separation for both the source 
and the target, as future work. In this case pattern-based 
methods may also work; however, if there is no reference data 
on user awareness, it needs to be modeled. The reason for this 
is simple: for instance, a user that has a higher level of 
awareness may use different identities in the source and target 
networks to make such de-anonymization attacks more 
difficult to execute. Therefore, the success of these attacks is 
not as trivial as for the first type of attacks. 

III. MODELING USER BEHAVIOR FOR IDENTITY SEPARATION 

In this section, we describe a model (a set of sub-models) of 
the user behavior for identity separation that allows all the 
three levels of anonymity mentioned in Section II.C. We have 
mapped identity separation to the graph model as “splitting” a 
vertex in a graph and probabilistically sorting the edges 
(represented connections with her contacts) between the new 
nodes, in some cases allowing duplication of edges with a 
certain probability. As mentioned before, anonymization of an 
edge is reflected by deleting it from the graph with a certain 
probability. 

There might be other approaches for modeling user 
behavior; however, in our opinion this approach is the closest 
to how people manage their acquaintances in their lives [2]. 
Furthermore, just to mention a real-life example, our approach 
is quite similar to functionality in Google+, namely how 
contacts are managed in the circles feature. 

Another important property of our model is that it is attack 
independent. This allows analyzing multiple attacks with this 
model, even pattern-based and other, non-pattern-based ones.  

A. Modeling Identity Partitioning 

Let us define a regular social network graph as  ��	 = �(�, �). Node � ∈ � is a user who has � = deg (�) 
neighbors in �. While performing identity separation, node � 
introduces � new vertices (i.e., new identities), and sorts edges 
with probabilities �� , ��, … , �� to each of the new identities. 

We can categorize the model parameters as: 

─ Context-dependent parameters: the user has little 
influence over such parameters. The only context-
dependent item in our model is the neighborhood size of 
the user (�). 

─ User-dependent parameters: these are the statistical 
descriptors of user behavior. In our model, the number of 
new identities denoted as � and the probabilities of 
sorting edges (�� … ��) can be considered as user-
dependent parameters. 

─ Attacker-dependent parameters: the adversary is free to 
choose these before executing the de-anonymization 
attack. Currently, there are no such parameters (as the 
model is attack independent), but for instance, in Section 
V. such new parameters will be introduced. 

The number of new identities (�) is modeled with a random 
variable �. The distribution of the edge sorting is  ���� =  �, … , �� =  �!, where �"  is a random variable 
describing the number of edges between the #th new identity 
and the neighbors of the original node. We do not assume any 
distribution for �, and the distribution for �"  is defined with 
the chosen user-behavior model. 

The model and the parameters could be fine-tuned with 
quality reference data; however, there are some obstacles in 
the way. As mentioned before, Google+ is the first service that 
compels its users to sort their contacts, and although the 
profiles are public, circles of users are not yet. Furthermore, in 
other services where sorting contacts is available but not 
mandatory, we experienced that this feature is rarely used, and 
often the contact groups are not publicly available – making 
social network data harvesting a futile task. Therefore, 
verifying our model with reference data is still an open 
research task that stays future work. 

B. General Assertions 

Our model is based on some assertions about the structure 
of the network before and after applying identity separation. 
These assertions are assumed to be true in all sub-models. 
Assertion 1. A new identity can have even zero of the 

original contacts in the export (i.e., due to edge 

anonymization). 

Assertion 2. A user �" may create a maximum of deg(�") 
new identities. While it is possible to create an unlimited 
number of identities, and assign duplicate edges to them, we 
believe that this does not match with the user’s expected 
behavior and this is an acceptable rational limitation. 
Assertion 3. A user may create even 0 new identities (i.e., 

perform self-deletion from the graph). This happens when all 
the connections are anonymized. 
Assertion 4. The only contacts existing in the source 

network are modeled in the identity partitioning. This 
simplifies the behavioral model, but does not necessarily make 
the results more favorable: including new contacts would add 
noise to the model, which would increase failure rates. 
Assertion 5. All actions of the nodes in the network are 

assumed to be using identity separation independently. Our 
analysis does not cover collaborating users, even though 
collaboration would mean stronger resistance and higher 
failure rates. 
Assertion 6. Edges are not sorted independently. This is a 

rational consideration, since all new identities belong to the 
same user, who sorts the edges (in an intelligent way). 
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C. Sub-Models for User Behavior 

Dependent on the chosen user behavior, there are further 
aspects to be considered in the sub-models: 

─ Can different identities of the same user have 
overlapping neighborhood (i.e., duplicated edges)? 
Overlapping allows the overall number of connections to 
increase, formally, ∃���� =  �, … , �� =  �! > 0, that ∑  " > � with (0 ≤  " ≤ �). 

─ Is edge anonymization permitted? Deleting edges allows 
the overall number of connections to decrease, as ∃���� =  �, … , �� =  �! > 0, that ∑  " < �. 

Based on these aspects, new sub-models can be introduced 
that we have summarized in Table 2. The names of the sub-
models require some explanation. We have named the model 
with no edge anonymization, and no overlaps the basic model, 
since this allows the least privacy enhancing functionality for 
the user (only identity separation itself). Conversely, the 
realistic model is just the opposite: it implies the fewest 
limitations in her possibilities. We believe that most users of a 
social network would use anonymization or duplication for 
their connections; hence the notation “realistic”. 

 
Besides, a worst and a best model also exist, which are 

named from the algorithm’s point of view. The best model 
allows a user to only decrease the number of her contacts, and 
therefore causing more information loss (i.e., structural 
damage). The worst model is the opposite: it only allows 
creating duplications, and therefore making “backups” of 
structural information, and helping the attacker that way. 
 

IV. IDENTITY SEPARATION AND ACTIVE ATTACKS 

Backstrom et al. describe two attacks, a semi-passive and an 
active attack, in which both the attackers are able to modify 
the network prior to the sanitization [4]. In both attacks the 
attackers’ goal is to insert a specific structure (a subgraph) into 
the SN graph that can be revealed later only by the attackers 
but no one else – this is what they call structural 
steganography. This subgraph is connected to the SN graph by 
creating new edges to a small number of targeted users. This is 
one the disadvantages of this attack: they only allow revealing 
the identity of a small number of users. However, for some 
networks active and semi-passive attacks can not be executed 
for one of the following reasons: 

─ The modification of the network structure may be 
expensive (e.g., phone calls). 

─ The modification may not be executable (e.g., network 
created from observed e-mails). 

─ To insert the structure too many modifications would be 
required (e.g., a valid e-mail address must be providing 
for the registration). 

─ The attacker is not always able to influence connections 
(e.g., connections require two-way confirmation). 

All these problems inspired the research of passive attacks 
[20]. However, from the viewpoint of identity separation, the 
active attacks are better than passive attacks: the inserted 
structure is under the exclusive control of the attacker, and 
therefore its structure is always known, and can be found by 
the malicious collaborators. On the other hand, even if such 
attacks may not be prevented, one can use identity separation 
to separate herself from suspicious users, neighborhoods (i.e., 
structures) to prevent re-identification. This kind of self-
defense works against passive attacks, too. 

V. ANALYSIS OF FAILURE PROBABILITY FOR THE CLIQUE-
BASED PASSIVE ATTACK 

In this section, we discuss our results of the analyses based 
on the user behavior model in case of an attacker using the 
clique-based algorithm (discussed in Section II.A). We 
included an assumption from the original attack: there are 
some unique 4-cliques that exist in both networks and have 
similar neighborhoods in both, i.e., the cliques contain vertices 
with similar degrees [20]. 

Seed identification is considered to be successful for a 
clique if it remains a clique, and retains its degree values 
within an error factor after applying the identity separation. 
While the original algorithm compares common neighbor 
counts as well, our analysis concludes that even these two 
criteria can be violated effectively with identity separation, as 
shown later (i.e., we analyze the lower bound for the failure 
probability).  

Here, we analyze the failure probability of the attacker on 
statistical basis; however, it should be noted that individual 
protection against attacks is still possible, even if statistically 
an attack seems to be feasible, i.e., a user can intentionally 
create different neighborhood structures in different networks. 

In our opinion, the basic and the realistic models are the 
closest to real user behavior: we expect users to have roughly 
the same number of contacts before and after the identity 
separation (not including new contacts). Therefore, in our 
research, we focused on these models: the basic model is an 
analytically simpler model allowing identity separation only, 
and the realistic model allowing more functionality for users 
(with more mathematical complexity). 

A. Naïve Analysis on 4-cliques 

By using real-life data harvested from different social 
networks, we simulated identity separation to analyze its 
effects on the network structure from the attacker’s clique-
oriented point of view. Cliques can be easily destroyed via 
identity separation: 

─ One of the users separates herself totally from the clique. 
This is equivalent to the removal of the representing 
node. 

─ One of the users removes at least one edge from the 
clique. 

─ At least one of the users uses identity separation and 
separates at least an edge from the clique. 

TABLE 2. CATEGORIES OF MODELS OF USER BEHAVIOR. 
 Overlap No overlap 

Edge deletion Realistic model Best model 
No edge deletion Worst model Basic model 
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In these cases, the clique no longer remains connected, and 
the attacker will fail in finding it. We executed simulation 
experiments to determine how effectively identity separation 
removes 4-cliques from the network. For our experiments we 
used structural information crawled from two real-life 
networks: the Slashdot friend or foe links that were crawled in 
February 2009 [17], and the Epinions who-trust-who network 
data that were crawled in 2003 [23]. From the Slashdot 
network 10,000 nodes were selected containing 1,816,110 4-
cliques, and 1,000 nodes were selected containing 2,102,842 
4-cliques from the Epinions network. For comparison, a full 
graph of 100 nodes (with 3,921,225 4-cliques) was also 
included. 

For simulating identity separation, random nodes were 
selected to be split into two new nodes, and edges were 
assigned to each with equal probability (i.e., accordingly to the 
basic model). We have also defined a theoretical limit to show 
the expected number of cliques affected by identity separation. 
Adding more privacy-enhancing functionality to the 
simulation, such as edge and node removal, the number of 
cliques would be furthermore decreased, closer to the 
theoretical limits. 

If random variable � denotes the number of identities 
belonging to the same user (without assigning a distribution to 
it), the probability if there are any identity separations in a �-
clique *+ = ,��, … , �+- can be calculated as in 
 �"./ = �(∃�": �" > 1 | # = 1. . �3) = 1 4 �(∀�": �" = 1 | # = 1. . �3) = 1 4 �+(� = 1). (1.) 
 

Therefore, the expected number of cliques remaining intact 
can be calculated as the expected value of the binomial 
distribution 6~8(9+:;/, 1 4 �"./), where 9+:;/ denotes the 
number of 4-cliques in the original graph. The expected value 
of 6 is 
 �<6= = 9+:;/ ∙ (1 4 �"./) = 9+:;/ ∙ �+(� = 1). (2.) 
 

The relative values of �<6= with � = 4 are denoted on Fig. 
1 as the expected number of cliques remaining intact by 
identity separation (denoted as “Theoretical”). It is possible 
that the clique remains a clique, but the probability of recovery 
depends on further errors regarding the compared degree and 
common neighbor count values. An analysis of these issues is 
discussed in the next sections. 

We found that as the number of users who use identity 
separation increases, the number of 4-cliques decreases fast 
and almost similarly for all networks (see Fig. 1). For instance, 
in both test networks for �(� = 2) = 0.2 the number of 
remaining cliques was almost halved: the percentage of intact 
4-cliques was 52.26% for the Slashdot network, 51.27% for 
the Epinions network, and 55.22% for the full graph. It is also 
visible on Fig 1. that graphs having more 4-cliques degrade 
faster. The reason behind this phenomenon is simple: usually 
several 4-cliques overlap in a single node, and therefore 
splitting it causes the deletion of multiple 4-cliques. 

Our conclusion is for the naïve analysis: identity separation 

erodes network structure effectively, thus it offers strong 
protection against structural attacks, and therefore it needs to 
be furthermore analyzed.  

 

B. User Behavior Model with Attack Related Parameters 

In this case, node � ∈ � is a user who is part of a �-clique, 
and has � = deg (�) neighbors in �, and therefore node � has � 4 1 inner and � 4 � A 1 outer edges, as seen from the 
viewpoint of the clique. 

For the inner edges, the distribution of the edge sorting is 
described as ���� =  �, … , �� =  �!, with no predefined 
distribution included; the distributions are defined with the 
chosen model. For the outer edges, the distribution is 
described similarly as ����B =  �B , … , ��B =  �B !. �"  and �"B are 
random variables describing the number of edges between the #th identity and the members of the original clique, and those 
between the #th identity and the neighbors of the original 
node, respectively. 

The original algorithm defines an error parameter � for the 
seed identification, and an error measure based on it: the 
matched node degree values need to match within an error 
factor of 1 ± �.  

Based on this, we define an error measure function that will 
be used in the calculation of the failure probability, given by 
the function of  
 C( , �) = D1, EFG�H < 1 4 � ∧ � = � 4 1J ∨ � < � 4 1 0, otherwise                                                        3, (3.) 

 
where   denotes the number of outer, and � denotes the 
number of inner edges. 

The node degree value �, the clique size �, and the error 
parameter � are assumed to be known constants. We note, that 
the clique size (�) and the error parameter (�) are new 
attacker-dependent parameters introduced to the model (see 
Section III.A). It should be noted that the attacker, to achieve 
better results, can choose to execute several attacks with 

 
Fig. 1. Simulation results (including the theoretical limit) show the 
degradation in clique numbers in case of allowing identity separation. 
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different values for these parameters, without any limitations. 

C. Calculation of Failure Probability 

It must be noted that different actors have different views 
on the measure of failure probability. The adversary is 
interested in discovering the correct mapping for several 
cliques. As such, she is likely to be interested in the 
probability of failure in identifying a �-clique. Here, we only 
define the failure probability for a single node, but for a clique 
it can be calculated simply by giving the probability of the 
union of failure events, where members of the clique damage 
the clique or change node degree values and causing errors. 

The point of view of a user is, on the other hand, that she 
herself should not be vulnerable to the attack; other users are 
more or less irrelevant to her. This is why we have focused on 
calculating failure probability of single users. It must be noted 
that this probability is clique-independent, and therefore the 
same regardless of the number of cliques the user is member 
of. 

Furthermore, the calculation does not take actions of other 
users in the clique into account, i.e., it is assumed that they 
neither perform identity separation, nor anonymize any of 
their edges. If we took these effects into account, the failure 
probability would be higher in most cases, and at least equal in 
theory, since other users could also destroy the clique or 
change the degrees of the vertices thereof, making 
identification less probable. 

The probability of failure for a node �S, based on the 
variables, assumptions and assertions introduced previously is 
 �("fail for �S") = �(� = 0) A ∑ �("fail"|� = �) ∙ �(� = �)XYZ([\)�]� .  (4.) 

 
The first member of the sum is the probability of the case 

where the user has 0 identities in the exported graph, i.e., all 
her edges are anonymized. The other part of the sum 
incorporates Assertion 2, namely that the user creates at most 
as many identities as many contacts she has. The results for 
the different sub-models of user behavior mainly deviate in the 
definition of the conditional probability �("fail"|� = �). Note 
that the formula for the sum may slightly differ in some cases, 
e.g., in that of the basic model, where it does not include 
probabilities for � = 1. 

In the general case, the conditional failure probability in (4) 
can be unfolded as 
 �("fail"|� = �)= ^ ��"fail"|�� = ��, … , �� = ��! ∙ ���� = ��, … , �� = ��!∀;_

. (5.) 

 
Furthermore, probability ��"fail"|�� = ��, … , �� = ��! can 

be calculated differently for two cases. If ∀�" < � 4 1, i.e., the 
clique is always destroyed, since all edges are sorted in groups 
having less than � 4 1 edges, then  ��"fail"|�� = ��, … , �� = ��! = 1 always. 

In the other case, where ∃�" = � 4 1, the conditional failure 

probability in (5) is calculated as 
 ��"fail"|�� = ��, … , �� = ��! (6.) 

= � `a���B = b�, … , ��B = b�cC(b�, ��) = 1, … , C�b� , �d! = 1!∀e_
f 

 
By knowing that these events are mutually exclusive, (6) 

equals to 
 ∑ ����B = b� , … , ��B = b�! ∙∀e_ C(b�, ��) ∙ … ∙ C�b� , ��!. (7.) 
 

Therefore, the failure probability for a node with � 
identities is 
 �("fail"|� = �) (8.) = ^ ���� = ��, … , �� = ��!∄;_]+h�A ^ ���� = ��, … , �� = ��!∃;_]+h�

∙ i^ ����B = b�, … , ��B = b�! ∙∀e_
C(b�, ��) ∙ … ∙ C�b�, ��!j 

 
This is applicable for any � ≠ 0 number of identities, and 

by using this formula the overall failure probability can be 
described accordingly. 

D. Failure Probability in the Basic Model 

The basic sub-model is the analytically the simplest one, 
and the results obtained with this restricted model are quite 
satisfactory. The basic model introduces additional assertions. 
Assertion 7. Contacts of the separated identities do not 

overlap. 

Assertion 8. Edges cannot be anonymized. 
In this model, the user sorts � edges among � identities. The 
multinomial distribution is a natural choice for describing such 
a case, since it describes � trials when the outcomes can be 
sorted into one of � groups. Additionally, group probabilities 
can be adjusted, and therefore this model allows fine-tuning 
the distribution in a way for describing user behavior in the 
desired way. Multinomial distribution is used as  ���� =  �, … , �� =  �! ~ lm�� 4 1, ��, … , ��!, and ����B =  �B , … , ��B =  �B ! ~ lm�� 4 � A 1, ��, … , ��!, 

where ∑ �" = 1. 
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The formula for failure probability can then be derived as:  
 �("fail"|� = �) 

= ^
no
p���� = ��, �� = ��, … . , �q = �q , … , �� = ��!∑ ;r]+h�∃;r]+h�

∙ np ^ ⋯ ^ � t��B = b�, ��B = b�, … , �qB
Hh+G�hE∑ euuvwxyuvz J

ewxz]{
Hh+G�
ez]{

= bq , … , ��B = � 4 � A 1 4 |^ b}}]�h�
}]� ~� ∙ C�bq , �q!j

��
�

A ^ ���� = ��, �� = ��, … , �� = ��!∑ ;r]+h�∄;r]+h�
 . 

(9.) 

 
Then, the overall failure probability can then be derived 

easily. We know that for �("fail"|� = 1) the neighborhood of 
the node would remain the same, and therefore would not 
introduce any error in the seed identification. Consequently, 
the result can be deduced from the general formula, with the 
exclusion of the case for � =  1. 

During our numerical analysis, we have found that in this 
model for a fixed ��, the failure probability for two identities 
is the lower bound for all failure probabilities with a higher 
number of identities that include ��. In other words, for ∀�� , … , �+ with a fixed ��: 
 �("fail"|� > 2) � �("fail"|� = 2). (10.) 
 

This is an important finding for two reasons. On the one 
hand, this is a lower bound for failure probability, and 
therefore it is enough to continue analysis in the case of �("fail"|� = 2). On the other hand, it facilitates the estimation 
of the overall failure probability as well: 
 

�("fail") � ^ �("fail"|� = b) ∙ �(� = b)XYZ([_)
e]�

� ^ �("fail"|� = 2) ∙ �(� = b)XYZ([_)
e]�= �("fail"|� = 2) ∙ �1 4 �(� = 0) 4 �(� = 1)! . 

(11.) 

 
Fig. 2 describes how failure probability changes with 

different values for parameter �, while parameters � = 4 and � = 0.05 are fixed. 

 
The analysis has several interesting consequences. First of 

all, it can be seen that the failure probability is conveniently 
high even for a small � (e.g., � � 10). Secondly, users are 
given a relatively wide range of options for making their 
identification fail. Even if they use identity separation for just 
two identities, and the probability of using the second identity 
is small, the failure probability still remains high (e.g., for �� = 0.1, � = 50: �("fail"|� = 2)  = 0.899). It can be seen 
that the curve has inflection points. These are functions of the 
error parameter �. 

Fig. 3 describes how the failure probability changes in the 
function of � while parameters � = 100 and � = 4 are fixed. 
The curves do not deviate significantly for other n values 
either. 

 
This shape of the curve practically concludes that a user 

making use of identity separation in a meaningful way, the 
adversary cannot influence the success of the attack. It is 
demonstrated in the original article that the value of � should 

 
Fig. 3. Parameter analysis of �: �("fail"|� = 2) as a function of ��, with fixed � = 4 and � = 100 with different values for �. 
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Fig. 2. Parameter analysis of �: �("fail"|� = 2) as a function of ��, with fixed � = 4 and � = 0.05 with different values for �. 
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be around 0.05, and that a practical limitation of 0 < � ≤ 0.1 
applies. For these values, users should choose �� and �� such 
that 0.1 ≤ ��, �� ≤ 1 (�� A �� = 1), because this marks a 
point (i.e., a failure probability) beyond the inflection point of 
the curve. Finally, the analysis of parameter � has shown that 
there is no deviation in the failure probability for different 
clique sizes with different neighborhood sizes (� with � = 0.05). 

To sum it up, we can conclude that if the users use identity 
separation wisely, considering the influencing power of 
different parameters as mentioned above, the attacker has a 
low probability of identifying the nodes. This means that users 
need to separate their contacts into larger, but not necessarily 
equally sized groups. Therefore, this user behavior model can 
be suggested for users as a practical way to use identity 
separation, since it offers powerful protection if applied 
widely throughout the network. 

E. Analysis of the Realistic Model 

In this section, we discuss the analysis of the realistic 
model, which deviates from the basic model in regard of the 
additional Assertions 7 and 8. 
Assertion 9. Contacts of separated identities can overlap. 
Assertion 10. Edges may be anonymized by users. 
Selecting the proper distribution is not an easy choice, 

therefore it should be defined by its probability matrix, 
denoting the probability of a possible outcome in a cell. 
Deciding which distribution to choose in such a model is an 
interesting question. In our opinion, the distribution should 
reflect that the most likely case is that the number of all 
contacts after the identity separation is similar to that before, 
i.e., a few deletions and duplications are likely, but major 
deviations are not (see Fig. 4). 

 
Accordingly to the given distributions and the generic 

formulae for failure probability, we have done the parameter 
analysis numerically. Its characteristics are similar to that of 
the basic model, and the preliminary results are satisfactory 

for this model, too (see Fig. 5). 

 
We can conclude that the results are satisfactory even for 

small �s in all distributions under examination; however, these 
models deserve further research dependent on reference data, 
which we assign as future work. 

VI. CONCLUSION AND FUTURE WORK 

Our analysis has shown that our proposed models make 
seed identification fail with high probability. Therefore, we 
can consider identity separation as an effective 
countermeasure against de-anonymization attacks if the user 
chooses the parameters wisely. 

However, besides the answered questions, new ones arise. 
In the future, we would like to extend our analysis to the best 
and worst models, and discuss further results with the realistic 
model including new distributions compared with reference 
data if possible. 

As it is mentioned in this paper, the analysis focused on the 
seed identification phase in the state-of-the-art passive attack, 
but the propagation phase should be analyzed in the future, 
since it is incorporated in two passive attacks [20] and [21].  

It also seems to be desirable to extend the user behavior and 
the attacker model with new parameters to make it open for 
new attacks yet unknown. For example, the model can be 
extended to allow the analysis of the attack in [21]. 

Additionally, there are other types of third party attacks in 
the literature, such as attribute based ones [13], for which the 
effects of privacy-enhancing identity management should be 
analyzed. Instead of standalone use for re-identification, 
attributes can also be used to strengthen structural attacks: de-
anonymization results can be easily verified and corrected by 
inspecting the available attributes of nodes. Perhaps identity 
separation has also a viable effect on these attacks – it would 
be interesting to see this in the future. 
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