
”International Journal of Information Security” manuscript No.
(will be inserted by the editor)

Hiding Information Against Structural Re-identification
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Abstract Connections between users of social net-

working services pose a significant privacy threat. Re-

cently, several social network de-anonymization attacks

have been proposed that can efficiently re-identify users

at large-scale, solely considering the graph structure.

In this paper, we consider these privacy threats, and

analyze de-anonymization attacks at the model level

against a user-controlled privacy-enhancing technique

called identity separation. The latter allows creating

seemingly unrelated identities in parallel, even without

the consent of the service provider or other users.

It has been show that identity separation can be

used efficiently against re-identification attacks if user

cooperate with each other. However, while participation

would be crucial, this cannot be granted in a real life

scenario. Therefore, we introduce the y-identity model,

in which the user creates multiple separated identities,

and assigns the sensitive attribute to one of them ac-

cording to a given strategy. For this, we propose a strat-

egy to be used in real life situations, and formally prove

that there is a higher bound for the expected privacy

loss which is sufficiently low.
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1 Introduction

Social media services are used every day by millions.

However, besides the added value these services pro-

vide, social media also serves as an optimal platform

for commercial surveillance, and as recent cases show,

for government surveillance [33]. Forms of commercial

surveillance may be implicitly provided by the social

networking service provider; e.g., business partners or

scientific collaborators can be allowed to access sani-

tized data chunks from time to time, which may be

abused later. Social meta-data can additionally be put

into the use of re-identification of individuals in such

anonymized datasets [30] or even in datasets of mobil-

ity traces [8, 23,38].

Naive data anonymization techniques cannot pro-
vide an acceptable level of protection. Several works

have proven that nodes in anonymized datasets (also

called as sanitizated datasets) can be re-identified with

high accuracy in various contexts [3, 4, 9, 13, 22, 23, 29,

30, 34, 35, 38]. Most of these methods are capable of

achieving large-scale re-identification of social datasets

consisting of hundred thousand records.

In particular, we consider de-anonymization attacks

that use structural information only for re-identification

of anonymous entities within large datasets [3, 23, 29,

30,34,35,38]. There are recent examples, when the use

of these algorithms is extended to services containing

meta-data reflecting the underlying social connections

between its entities can be targeted. For example, it

has been shown, that spatio-temporal datasets (like

mobility traces or check-ins) can be converted into a

social network graph [36], which can be then aligned

with another social network in order to recover identi-

ties [23,30].
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We demonstrate the underlying principles of social

network re-identification on the following example. Let

us consider an attacker who buys an anonymous social

graph containing political preferences (as in Fig. 1b).

While this dataset can be useful for analysis alone itself,

it would be even more valuable if assigning each node

to a public identity would be possible. After crawling

social relations from another source, for instance from

a publicly available online social networking site, the

re-identification process can be done in two steps.

First, the attacker can search for nodes with out-

standing properties, like using node degree (degree of

a node denotes the number of contacts it has). The at-

tacker can create a re-identification match between the

nodes vDave ↔ v3 and vFred ↔ v2 as they are high

degree nodes who are unique in the networks. However,

this cannot be continued further. For example, vHarry
has two connections, but so does vCarol. However, if we

consider that vHarry is connected to both vDave, vFred,

this boils down our choices to the re-identification map-

ping of vHarry ↔ v1.

There are several ways to combat these kinds of at-

tacks. In this paper, we focus on a user centered tech-

nique, called identity separation, that could be applied

to existing services even without modification of the

service itself. Identity separation can be done on the

client side, it could be used without getting the consent

of the service provider. Identity separation is based on

the concept how we use our real identities in everyday

life: we share different information in different situa-

tions and with different acquaintances [11]. This can

also be applied to social networks to segregate infor-

mation with different groups of contacts [20]. In our

previous works we have proposed models for applying

identity separation to social networks [14,20], and also

provided the analysis of identity separation against re-

identification at a model level [16, 18]. In these evalua-

tions users adopted identity solely on their own, and in

some of the settings they cooperated to stop the attack.

Identity separation is not solely a technical inno-

vation: it already exists and it is in use in real-world

scenarios. There is a long list of authors who used pen

names for several reasons1, e.g., to protect their original

identity, or used multiple pen names to avoid harming

the reputation of each identity. Identity separation still

has its uses today, let us just think of the separation of

business and private identities [21] (e.g., via Facebook

and LinkedIn). It can be useful also when it is suspected

that two businesses exchange data of their users. Such

an exchange could cause economic disadvantages for the

users, thus using different account names, emails can be

1 Wikipedia on pen names:
http://en.wikipedia.org/wiki/Pen name

considered beneficial (e.g., using solutions such as Al-

bine’s Maskme2).

In this paper, we provide the model level analy-

sis of identity separation as a privacy-enhancing tool

against de-anonymization attacks. We build on our pre-

vious work, as we use the identity separation models

from [14]. Our aim is to provide guarantees compared

to previous models of identity separation [16, 18]. We

analyze identity separation from an individual point of

view, where the goal is to minimize possible private

data leakage. Our aim is to provide strategic guidelines

for managing private information in partial identities

for users who act alone.

Our main contributions are the following. We seek

strategies for users acting on their own, and first we ap-

ply the underlying principle of k-anonymity, a common

technique used for anonymization [40] to the structural

re-identification context: the user creates an identity

for which there are k − 1 structurally indistinguish-

able other users. We find that this method is inade-

quate in the current context due to the diverse struc-

ture of networks. Therefore, we propose an alternative

privacy-enhancing method, the novel information hid-

ing technique called y-identity, in which the user creates

y partial identities in parallel and hides a sensitive in-

formation in one of them. We analyze this technique for

different types of attackers, and propose a strategy for

unknown attackers. We prove that by using this strat-

egy, the expected privacy loss is equal or lower propor-

tionally to 1
y , which is at least equal, but likely better

than what is provided by the k-anonymity model.

The paper is organized as follows. Section 2 dis-

cusses related work, and in Section 3 we present the

threat model, notations, methodology we used in our

work. In Section 4 and 5 we provide the analysis on

the k-anonymity and the y-identity models. We discuss

how the presented results could be applied in Section

6, and conclude our work in Section 7.

2 Related Work

2.1 De-anonymization Attacks

In the context of our paper, re-identification is the

method for revealing the real identities of nodes within

an anonymized graph (the sanitized target graph) by

using a social network obtained from an auxiliary source

(the source graph, also called background knowledge).

In their original experiment the authors of [30] used

4-cliques of high degree nodes to initialize their attack,

2 Albine Maskme providing disposable emails:
https://www.abine.com/maskme/
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(a) Social network crawled from public
source (auxiliary data)

(b) Anonymous data published with political
preferences

Fig. 1: For example, an attacker can buy anonymized social network data for analysis of political preferences (b).

Next, using structural information obtained from a public social networking site (a) he can try to re-identify nodes

with political preferences.

to which we later refer to as Nar09. The initial re-

identification is followed by a sequence of propagation

steps (propagation phase). These steps are iterated on

the neighbors of the nodes already re-identified until

new nodes can be re-identified (i.e., it continuously ex-

tends the seed set). Identified nodes are also revisited.

In each iteration, candidates are selected from target

graph nodes, which share at least a common mapped

neighbor with the source node being re-identified. Tar-

get candidates are then compared by scoring their sim-

ilarity to the source node. If there is an outstanding

candidate, the source and target graphs are changed,

and a reverse checking is executed in order to verify

the proposed mapping. If the result of reverse check-

ing equals the source node, this is accepted as a valid

mapping. As the seeding identifies globally outstanding

nodes, and the propagation examines nodes connecting

to the ones already re-identified (i.e., locally outstand-

ing ones), these phases can also be named as global and

local re-identification phases [15].

It has been shown by Srivatsa and Hicks that loca-

tion traces can also be re-identified with similar meth-

ods [38]. In their work on small datasets (125 nodes and

below), they succeeded in identifying circa. 80% of users

by building anonymous networks of location traces, and

using explicit social networks for de-anonymization.

The work of Pham et al. showed that these algorithms

using spatio-temporal data for making social network

connections, can be extended to larger datasets [36].

Building upon their work, Ji et al. showed that spatio-

temporal data at the scale of hundred thousand entities

can be easily re-identified [23]. In their work, first a so-

cial network is generated based on the inspection of

co-occurrences in the spatio-temporal dataset, then it

is re-identified by using a social network as auxiliary

data. However, these algorithms of [25, 26, 38] can also

be used to attack regular social networks.

There are other works continuing the line of clas-

sical structural social de-anonymization algorithms.

Narayanan et al. in 2011 presented another variant of

their attack [29] specialized for the task of working on

two snapshots of the same network (with a higher re-

call rate). Pedarsani et al. proposed a novel type of

attack that can work without any initial input such

as seeds [34]. The algorithm designed by Nilizadeh et

al. uses other attacks as a base algorithm, and it ex-

ploits the cluster-oriented structure of the networks:

runs the base re-identification algorithm first on the

cluster structure, then inside them [31]. In their evalu-

ation they used the Nar algorithm. The works of Yart-

seva and Grossglauser [42], and the paper of Korula

and Lattenzi [27] contain simplified de-anonymization

attacks in order to enable formal analysis of the algo-

rithms. In our previous work we proposed Grasshop-

per [7] (also referred to as Grh), a robust attack algo-

rithm that works with very small error rates (typically

less then 1%).

The first comparative evaluation of most structural

de-anonymization attacks were first provided in [24].

Seven algorithms in [25–27, 30, 34, 38, 42] were selected

based on generality, scalability and practicality, were

compared regarding robustness of background knowl-

edge and against anonymization. Ji et al found that

some algorithms were the most prominent only condi-

tionally; they concluded that none of the evaluated al-
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gorithms could be considered as generally better than

others.

As none of the discussed attacks is proved to be bet-

ter in general than the original attack Nar09 [30], later

in our experiment we worked with this one. Identity sep-

aration could be considered to protect privacy against

Nar09 and even stronger attacks. We propose such a

method that we call the y-identity model, which allows

information hiding even against strong adversaries.

2.2 User Centered Privacy Protection Methods

There are several ways for tackling re-identification at-

tacks. However, as companies can be legally obliged

to share private user data [33], we prefer not relying

on the service provider for sanitization. Otherwise, one

might consider using revised service models, such as

distributed social networks [12], which could be a sub-

stitute to currently existing services.

We seek user centered privacy protection mecha-

nisms instead: ones that can be applied to existing

services (instead of graph sanitization applied by the

service provider), ones that either hide user informa-

tion or that are capable of preventing large-scale re-

identification. For instance, Scramble is a good exam-

ple for such solutions: it is independent of the service

provider and allows a fine-grained access control for

managing the sharing process of user data by encryp-

tion [6].

In another work, Beato et al. proposed the friend-in-

the-middle model, where proxy-like nodes act as media-

tors to hide connections, successfully tackling the attack

when approx. 10% adopt the technique [5]. The viability

of the FiM model is demonstrated on two snapshots of

the Slashdot network (obtained from the SNAP collec-

tion [37]). Identity separation has additional features,

for example hiding profile information beside making

relationships private [11]. Thus identity separation al-

lows an even finer-grained management of information,

with less cooperation compared to the friend-in-the-

middle model (which required the cooperation of three

for hiding a single edge).

Previously, we have analytically showed that iden-

tity separation is an effective tool against clique based

seeding mechanisms [14]. We furthermore analyzed the

protective strength of identity separation against the

propagation phase of Nar09 with simulation on datasets

obtained from three different social networks [16, 18].

We have shown that it is possible to stop the re-

identification attacks just by having 3-50% users adopt-

ing identity separation (the number of participants de-

pends if users are cooperating or not), and it is possible

to effectively hide information even for a few nodes.

However, these methods worked without guaran-

tees and required cooperation in order to be efficient.

Thus, we seek solutions that can provide privacy by

guaranteeing uncertainty of the attacker. Thus we pro-

pose the y-identity model that allows minimization

of disclosed information on the individual level: both

against the state-of-the-art attack and even stronger

re-identification attacks.

In our current work, we build upon the probabil-

ity based identity separaiton models we previously in-

troduced in [14], due to the lack of real-world data.

These models capture identity separation as splitting a

node, and assigning edges to the new nodes. The num-

ber of new identities is modeled with a random vari-

able Y = y, without requiring an exact distribution.

Four models are distinguished according to edge sort-

ing capabilities, depending on whether it is allowed to

delete (i.e., an edge becomes private) or to duplicate

edges. We used two of these in our experiments. The

basic model is simple and easy to work with, as it sim-

ply redistributes edges between the new identities (no

edge deletion or duplication allowed). We also used the

best model describing privacy oriented user behavior

(no edge duplication, but deletion allowed).

3 Methodology

In our work, we denote the sanitized graph to be de-

anonymized as Gtar, and the auxiliary data source

as Gsrc (where node identities are known). Ṽsrc ⊆
Vsrc, Ṽtar ⊆ Vtar denote the set of nodes that mutually

exist in both networks (i.e., overlapping nodes). Ground

truth is represented by mapping µG : Ṽsrc → Ṽtar
denoting relationship between coexisting nodes, and

λG : Ṽsrc ⇒ Ṽtar denote mappings between nodes

in Gsrc and the sets of their separated identities in

Gtar. Running a deterministic re-identification attack

on (Gsrc , Gtar) initialized by seed set µ0 : Vsrc → Vtar
(i.e., set of initially re-identified nodes) results in a re-

identification mapping denoted as µ : Vsrc → Vtar. We

denote the set of nodes adopting identity separation as

Vids ⊆ Vtar.
During our experiments we used multiple datasets

with different characteristics in order to avoid biases

caused by the structure. These were large networks

where brute-force attacks are practically not feasible.

For keeping our measurements realistic, datasets were

obtained from real networks. We used the Slashdot net-

work crawled in 2009 (82,168 nodes, 504,230 edges) and

the Epinions network crawled in 2002 (75,879 nodes,

405,740 edges) from the SNAP collection [37]. Our third

dataset is a subgraph exported from the LiveJournal
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network crawled in 2010 (by the authors; consisting of

66,752 nodes, 619,512 edges).

We generated test data for evaluating re-

identification attacks as follows (in Section 5.7).

First derived a background knowledge (Gsrc) and a

target graph (Gtar) from the source dataset, having

the desired fraction of nodes and edges overlapping,

and then modeled identity separation on a subset of

nodes in the target graph. For creating Gsrc, Gtar, we

used the perturbation strategy proposed by Narayanan

and Shmatikov [30], which produces realistic test data.

Their algorithm works as follows. First, it derives

Gsrc, Gtar with the desired fraction of overlapping

nodes (αv) from the source dataset. Next it deletes

edges independently from these copies to achieve an

edge overlap αe. We could easily calculate ground

truth µG by knowing the original graph structure.

After running several measurements with different

settings for αv, αe, we choose αv = 0.5, αe = 0.75

for our experiments. This setting is a good trade-off

at which a significant level of uncertainty is present

in the data (thus life-like), but it is still possible to

identify a large ratio of the co-existing nodes. Next,

we modeled identity separation on the target graph by

uniformly sampling nodes (where deg(v) ≥ 2). Then

nodes are split and their edges are sorted according to

the settings of the currently used identity separation

model. By recording these operations, we can extend

the ground truth mapping µG with λG.

We used the following settings for simulations. One

of the most important parameter of Nar09 is Θ, which

controls the ratio of true positives (recall rate) and false

positives (error rate). The lower Θ is the less accurate

mappings the algorithm will accept. We measured fairly

low error rates even for small values of Θ in our earlier

works [16, 17], therefore we have choosen to work with

Θ = 0.01. With respecting results in [17], we applied

random seed selection of high degree nodes selected

from the top 25% (denoted as random.25). Seed set size

was a thousand nodes, as this proved to be robust in

all networks [17], and in combination with random.25

it simulated a stronger attacker. We used top degree

seed nodes as the simulation of an even stronger at-

tackers (denoted as top). Seed nodes always represent

users who have not committed identity separation.

4 Evaluation of k-anonymity

Previous works on identity separation [16, 18] clarified

that identity separation requires cooperation to effi-

ciently stop attacks, and while it can provide privacy

protection, that comes without guarantees. For exam-

ple, a stronger attacker could find the proper identity

regardless of user efforts that worked before.

Thus, we focus on techniques providing strong pri-

vacy guarantees The first technique we discuss is k-

anonymity [40], a simple model that is able to provide

a given level of privacy, limited by parameter k. In case

of k-anonymity, the user aligns one of her identities to

its neighbors for hiding the sensitive attribute it has.

The second technique is based on the idea that the user

creates a number of new identities and hides the sen-

sitive information in one of those (analogously to the

parameter k in k-anonymity). The latter is discussed in

Section 5.

The definition of k-anonymity is based on the con-

cept of quasi-identifiers, which are constructed from at-

tributes of a data entity (e.g., user as a database row

or attributes of a web browsing agent). Attributes of

a quasi-identifier are not reckoned as explicit identi-

fiers, but being used together can enable identification.

For example, based on 1990 US Census data, Sweeney

showed that 87% of the US population can be identified

with the quasi-identifier of {5-digit ZIP, gender,

date of birth} [39].

Definition 1 k-anonymity. A dataset is k-anonymous

if for all entries there are at least k-1 other entries with

the same quasi-identifiers [40].

Despite it has been shown that the concept of k-

anonymity is inappropriate for anonymizing data with

high dimensionality [1], it is applied and analyzed

in many contexts even for the sanitization of social

network structural data [2]. There are also known

weaknesses of k-anonymity, for example regardless of

anonymization the attacker can still learn information:

the distribution of the sensitive attributes in the k-

anonymous groups can significantly deviate from the

global distribution. Subsequent models aim to patch

such vulnerabilities, such as l-diversity and t-closeness

[28].

In order to achieve k-anonymity, previous work pro-

posed isomorphism-based methods. In particular, k-

automorphism [43] and k-isomorphism [10] have been

proposed to protect structural privacy against re-

identification attacks: these methods anonymize the

whole network, where for each node there are k − 1

structurally equivalent other nodes. Both methods par-

tition the network, then modify the structure in (and

between) the partitions to k-anonymize these subsets.

While these methods meet the guarantees that we

are looking for, they also need to have an overview and

access to the whole dataset. This makes interaction with

the service provider inevitable, which is not acceptable

for user-centric identity separation techniques, where
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we expect users to be able to act on their own. There-

fore we propose and analyze a method that applies k-

anonymity strictly on the individual level.

During the re-identification matching in the attacks,

nodes are compared to their friends-of-friends, to the 2-

hop neighborhood. Therefore, based on this, we can ex-

tend the concept of k-anonymity to identities (or users)

regarding their 2-hop neighborhood, in order to pre-

serve user privacy against large-scale re-identification

attacks.

Definition 2 (k, 2)-anonymity. A user vn ∈ G is (k, 2)-

anonymous if there are at least k-1 other users having

exactly the same neighborhood, i.e.,

|{vi : vi ∈ {G.nbrs(Vn) \ vn}, Vi = Vn}| ≥ k,

where Vj = G.nbrs(vj).

In other words, this definition means that a node

should be structurally equivalent to k-1 other nodes

that are at a 2-hops distance from him. We need an

algorithm for this; one that satisfies the definition of

(k, 2)-anonymity, and is constrained in its operations

to the 2-hop neighborhood of the node.

Thus, we have constructed an algorithm (Alg. 1),

called K-AnonymizeNode, for finding (k, 2)-anonymous

settings for users planning to apply identity separation.

The algorithm assumed to know the network structure

in a 2-hop distance. Beside parameter k the algorithm

also takes an input of c that gives the desired neigh-

borhood size of the new identity. Then the algorithm

seeks if there are k two-hop neighbors that have exactly

c common neighbors with the user. If there are no users

to propose, the algorithm proposes new connections in

order to meet the criteria of (k, 2)-anonymity.

We measured the possibility of (k, 2)-anonymity in

the three networks on 1, 000 nodes randomly sampled

from each (with deg(v) ≥ 30) for c ∈ {3, 5, 10, 20}. The

results of our experiments are shown on Fig. 2. We se-

lected results from Epinions dataset with k = 2 for ex-

planation on Fig. 2a. While in almost half of the cases

with c = 2 it was possible to achieve anonymity without

adding edges, this was rather not possible for larger val-

ues of c. We observed similar results in other networks,

and also when analyzing whether this property differ as

the network size change (see Fig. 2b). For greater (and

practicable) values of k achieving anonymity required

adding even more edges (or it was impossible to reach).

Therefore, we concluded that (k, 2)-anonymity is

an inappropriate option for individually protecting pri-

vacy, as the structure of social networks is not making

such techniques feasible. Thus, we analyzed alternative

methods providing an equivalent level of privacy: when

the user creates several new identities of which some

are fake.

5 Analysis of the y-identity Model

As k-anonymity failed, in the following we propose a

novel method that provides privacy in a similar manner.

In the new y-identity model the user creates y new iden-

tities and randomly assigns the privacy sensitive infor-

mation to one of the identities (n.b. parameter y is used

in a similar sense as k in the k-anonymity model is used:

this parameter bounds the privacy the user can have).

We assume the user is rational and aims to achieve op-

timal privacy-preserving settings. Thus, in our settings

she would always choose a single identity for storing the

sensitive value among all identities she possesses.

Several types of user data can be considered as a

sensitive attribute: either sensitive personal attributes

(e.g., religious or political preferences), free-text profile

information (e.g., link to a website) or the content the

user shares (e.g., wall messages). However, managing

such a vast amount of information by hand can be dif-

ficult, and this process should be supported by an iden-

tity manager software (e.g., Scramble is such a proof-of-

concept utility [6]). With such a support the user could

be able to achieve fine-grained control over her profile

and safely reveal the secret information only for the

selected audience with ease, while separated identities

would be represented as different users for the attacker,

but also for the social network platform and its users.

Definition 3 y-identity. A user is considered to be

acting according to the y-identity model if she cre-

ates y separated identities (either in one or in multiple

datasets), and assigns randomly a privacy-sensitive at-

tribute to only one of the identities, determined by a

given distribution. Other identities then receive plausi-

ble, but false attributes.

We consider mass re-identification attacks that aim

to de-anonymize thousands of nodes in some sanitized

networks [30]. A rational attacker aims to reveal qual-

ity private information at large in two sequential steps.

First, the attacker uses a structural re-identification al-

gorithm for discovering the mappings between the pub-

lic identities of users and all of their separated identi-

ties in sanitized datasets. In Section 5.7 we provide a

simple intuitive example for finding multiple separated

identities by utilizing Nar09. Then, after finding these

mappings for a given user, the attacker decides which

identity has the correct sensitive attribute: she decides

that either none, or she picks one of the partial identi-

ties to be valid.

In this paper, we consider the case when the attacker

uses a regular social network as background knowledge.

If the background knowledge would also have identity

separated users, the attacker could find mappings be-
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(a) Results from Epinions dataset with k = 2. While in almost
half of the cases it was possible to achieve anonymity for new
identities with a very small neighborhood (c = 3) without
modification, this was rather not possible for larger values of
c. As the desired size of the neighborhood grew, the number
of edges to add also increased.
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(b) These experiments indicate that the findings discussed re-
lated to (a) are also true for other networks even for different
sizes. It is additionally shown that if we increase k the situa-
tion rapidly develop into an even worse scenario.

Fig. 2: (k, 2)-anonymity with edge modification in action. Results shows this method is not feasible due to the

great diversity in network structure.

tween partial identities. However, this would not nec-

essarily pose a privacy risk for the users: the attacker

could only learn mappings between fake identities and

anonymized partial identities and their sensitive at-

tributes. Eventually, this would mean that the attacker

could not learn new information by de-anonymization,

as the sensitive attribute could not be linked to a glob-

ally recognized (or known) personal identity.

5.1 Formal Description of the Attack

Assume that the attacker had run a successful large-

scale re-identification attack against a pair of networks.

In the next step the goal is find the correct sensitive in-

formation for users that have multiple partial identities.

Narrowing our focus down to a given user, we can for-

mally describe this process as a game; however, we did

not always model it as a game (see the attacker model

in Section 5.2 for details). Therefore, we provide the

formal description of this problem as for games, where

the player set P contains the user and the attacker.

Before the attacker obtained the dataset, user vn
acted according to the y-identity model to protect her

privacy. Initially, she creates y new identities, in a single

service, or in multiple social network based services.

These partial identities are denoted as vn\i (i ∈ [1, y]).

Then the sensitive information is randomly assigned to

one of these identities with probability ri. The selected

identity is denoted as v?n\i. We model the user selection

decision for hiding the sensitive attribute with P (R =

i) = ri, where we expected that
∑
∀i ri = 1 (n.b. this

covers the case of a deterministic decision, too).

Since the attacker had run the re-identification al-

gorithm already, she has to find v?n\i among all vn\i
(i ∈ [1, y]). We assume that the attacker has no infor-

mation about the identity separation process itself.

At this point, we model the attacker decisions with

distribution P (Q = i) = qi, the probability for accept-

ing the sensitive attribute of re-identified partial iden-

tity vn\i to be valid. We allow
∑
∀i qi ≤ 1 for attackers,

as they might not accept any of the found attributes

to be valid. This could be because that all values are

conflicting the background knowledge of the attacker.

The strategy set S covers selecting one of the iden-

tities the user has. From a user point of view this is

for storing the sensitive attribute, while for an attacker

this is for accepting a value as valid. In some cases the

attacker only has access to S ′ ⊂ S, limiting the number

of her possible decisions. We assume that the decisions

are made in single round. The attacker could repeatedly

make decisions in several rounds; however, as he cannot

verify the currently accepted attribute, this would not

contribute anything to the success of the attack.

Finally, we can introduce utility values (or payoffs)

denoted as U . Let denote u+n as the utility for the user

in case of avoiding a privacy breach (false information is
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learned by the attacker), and u−n for private information

leakage. Similarly, we denote u+A and u−A for the attacker

learning valid or false information. The example of cases

we consider is provided in Table 1 for y = 2 identities

within a single dataset.

Payoffs can be quite asymmetric. For instance, a

single node may not be very important for the attacker

(as being only one of hundreds of thousands), while the

targeted private value can be very important for the

user. This can lead to asymmetry such as u−A � u−n .

5.2 Attacker Model

In our attacker model, we consider two types of attack-

ers:

1. Strong attackers, who are able to discover all y iden-

tities of a given user vn. The attacker knows he has

access to all identities of vn. As both the attacker

and the user knows all the possible choices the other

could make (or in other words both players know S),

we will use a game-theoretic approach to determine

best strategies.

2. Weak attackers, who are able to reveal some of the

identities (even perhaps all of them), but are uncer-

tain if there are any additional undiscovered identi-

ties or not (e.g., as there might be further unknown

datasets that the adversary is unaware of). More

formally, while the user knows S, the attacker only

has access to S ′ ⊆ S, and does not know if S ′ = S.

Due to missing possible pure strategies of the user

and for the sake of simplicity, here we model the

attacker as making decisions according to a given

distribution on the discovered identities. For search-

ing the best user strategy, we use an optimization

approach for minimizing the expected privacy loss,

where the user is assumed to be able to approximate

the attacker’s probabilistic decision function.

As a consequence, the y-identity model can pro-

vide two distinguished levels of privacy depending on

the chosen adversary. If someone uses strategy against

strong attackers that would allow a level of privacy

against an attacker with no bounds on computation

power and access to data. For these attackers, we as-

sert that they always make a choice, i.e.,
∑
∀i qi = 1.

For strategies against weak attackers, someone

could have privacy against limited attackers, who can-

not access all datasets or cannot re-identify all partial

identities certainly. Furthermore, the decision making

distribution of the weak attacker type could be esti-

mated by the user by several means. For example, based

on the background information they have (e.g., compar-

ing the sensitive attributes to the background knowl-

edge or global statistics of the network), by analyzing

the validity of the information provided (e.g., consis-

tency checking of sensitive attributes of all vn\i with

their neighborhood), or simply based on how the re-

identification algorithm works (we give examples of this

later).

As future work, it would be interesting to extend the

attacker model with another type of weak attacker who

can assess the probability that the sensitive information

is stored in an identity that has not been found. Cur-

rently, this does not seem to be a reasonable assump-

tion, however, this might be a subject to change. It can

be also interesting to consider the re-identification algo-

rithm as a part of the decision making process (instead

of an initialization), and to see how the whole process

could be analyzed as a game.

5.3 Evaluation of Strong Attackers

We model the evaluation of strong attackers as a single-

round game between the attacker and the user (P),

where none of the players know the steps the other

might have taken before. We call this the identity parti-

tioning game, and it works as follows. The user assigns

the sensitive information to the ith partial identity vn\i
with probability ri (changing the identity to marked

as v?n\i). The attacker runs the re-identification attack

that finds mappings to all partial identities, and will

accept the sensitive attribute of one of them with prob-

ability qi. Here the utility matrix is a diagonal matrix

with the size of (y × y), having values as (u+A;u−n ) in

the diagonal, and (u−A;u+n ) in all other places. Thus

pure strategies S of the players, and utilities U are as

discussed before.

The Nash equilibrium [32] of this game is a pair of

strategies when none of the players can increase their

payoff by modifying only their strategy alone. It can

be easily concluded that no pure strategy equilibrium

exists in this game; this would mean that both players

would always select a fixed identity. If the user con-

stantly chooses the ith identity as her strategy, the at-

tacker can respond by choosing the same identity, mod-

ifying the payoffs as u+A;u−n favoring herself. Regardless

how the user acts, the attacker could always have a

response leading to an equivalent situation.

Fortunately, this could be easily fixed when the play-

ers make their decisions according to a certain distri-

bution. In this case mixed strategy equilibrium exists

with given optimal strategy probabilities.

Theorem 1 A mixed strategy Nash equilibrium exists

in the identity partitioning game (with a user having
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Table 1: Utility matrix (U) for the

case of y = 2.

User
v?n\1 v?n\2

Attacker
v?n\1 u+

A;u−n u−A ;u+
n

v?n\2 u−A ;u+
n u+

A;u−n

Table 2: The qm vectors for the first

example (Section 5.4.2) for all m =

[m1,m2].

m 0 1
0 q[0 0] = [0 0] q[1 0] = [q1 0]

1 q[0 1] = [0 q2] q[1 1] = [q3 q4]

Table 3: The qm vectors for the sec-

ond example (Section 5.4.3) for all

m = [m1,m2].

m 0 1
0 q[0 0] = [0 0] q[1 0] = [1 0]

1 q[0 1] = [0 1] q[1 1] = [P1 P2]

y separated identities), where the equilibrium strategy

probabilities are qi = 1
y , ri = 1

y (∀i).

Proof In order for the strategy of the user to be part of

a Nash equilibrium, the expected payoff for each action

of the attacker need to be indifferent. Comparing the

expected payoff of the first strategy to all other strate-

gies describes this criteria in the form of y−1 equations.

These equations can be given as:

u−Ari +
∑
∀k 6=i

u+Ark = u−Arj +
∑
∀l 6=j

u+Arl, (1)

where i 6= j. We can additionally use
∑
∀i ri = 1 as

the yth equation. Using the latter, prior equations in

the form of Eq. (1) can be simplified as:

u−Ari + u+A(1− ri) = u−Arj + u+A(1− rj) (2)

Using all of these equations, we have now a linear

system of y equations, with the coefficient matrix is:

A =


u−A − u

+
A u+A − u

−
A 0 · · · 0 0

u−A − u
+
A 0 u+A − u

−
A · · · 0 0

...
...

...
. . .

...
...

u−A − u
+
A 0 0 · · · u+A − u

−
A 0

1 1 1 · · · 1 1

 (3)

As all equations contribute a coefficient that is ex-

cluded from the others, we have a linear independent

equation system. As we have y linearly independent

equations and y variables, this system has a solution.

Equations in the form of Eq. (2) can be reduced to

ri = rj . (4)

With
∑
∀i ri = 1 the only valid solution of the equa-

tion system is ri = 1
y (∀i).

The equilibrium strategy can also be calculated

identically for the attacker, due to the symmetry of the

payoff matrix. Therefore, the Nash equilibrium strat-

egy is at when both parties use a mixed strategy with

probabilities qi = 1
y , ri = 1

y (∀i). �

Theorem 1 proves that the most efficient strategy

one could find against strong attackers is to use random,

equal assignment probabilities. While this is intuitively

the best strategy, as we show later, it is not necessarily

also the best for the weak type of attackers.

5.4 Evaluation of Weak Attackers

We evaluate weak attackers in the following. We as-

sume that the user can estimate Pi, the discovery prob-

abilities respectively of her partial identities vn\i (∀i ∈
[1, y]). Here, we work with Pi without restricting its

value. However, the estimation of Pi depend mainly on

two factors: the probability that the attacker can ac-

cess the dataset that includes vn\i, and additionally the

probability of finding that identity.

Later we show how lower estimates with Nar09 can

be calculated for discovery probabilities within a single

dataset. However, calculating Pi values precisely can be

a hard task; in such a case, we propose to stick to the

proposed solution we provide in Section 5.5.

5.4.1 Estimating the Expected Privacy Loss

Let start with a specific case when the attacker discov-

ers some given identities of the user vn, and calculate

the estimated privacy loss for that situation. The fact

of the discovery is stored in the discovery vector m (size

of y), where mi ∈m represents whether the ith identity

(vn\i) was discovered or not (mi ∈ [0, 1], mi = 1 indi-

cating the identity was found). Then, the privacy loss

depends if the sensitive information was put into one of

the discovered identities, and the right one is accepted

as valid.

Generally, the attacker decision can even vary de-

pending which identities were discovered (i.e., based on

m). Therefore, we further refine the attacker decision

distribution, and introduce the distribution vector qm,

containing probabilities for a given instance of m. For

instance, the attacker may decide to choose uniformly

between all discovered identities leading to different dis-

tributions depending on m. Here qmi ∈ qm denotes the
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probability that respectingmi ∈m the attacker accepts

the sensitive information stored in vn\i (n.b. mi = 0 im-

plies qmi = 0).

The probability that the attacker obtains valid in-

formation in this case is ri ·qmi for each discovered iden-

tity. Then we can describe the expected cost of privacy

loss for a given m as:

u−n ·
(∑
∀i

ri · qmi ·mi

)
,∀i ∈ [1, y] (5)

As mi = 0 implies qmi = 0, and otherwise mi = 1,

we leave mi out from the formula in the following. The

probability of having an instance of m can be described

as follows:

Pm =
∏
∀j

((1−mj) + (−1)(1−mj) · Pj),∀j ∈ [1, y] (6)

The expected privacy loss, iterating through the all

available possibilities of m is as follows:

Ew[un] =
∑
∀m

((∏
∀j

((1−mj) + (−1)(1−mj) · Pj)
)

·
(∑
∀i

ri · qmi
))
· u−n

(7)

where i, j ∈ [1, y].

However, this formula leads to an interesting advise

regarding the best user strategy: using pure strategies

leads to less privacy loss against weak attackers.

Theorem 2 Given a weak attacker with known qm vec-

tors (for all m), a set of pure strategies S ′ ⊆ S exists

that should be used in order to minimize the expected

privacy loss Ew[un]. Strategies in S ′ can be used either

as pure strategies or as mixed strategies.

Proof The formula in Eq. (7) can be rewritten in the

following way:

Ew[un] = u−n ·
∑
∀m

(
Pm ·

∑
∀i

ri · qmi

)

= u−n ·
∑
∀i

(
(
∑
∀m

qmi · Pm)︸ ︷︷ ︸
αi

·ri
)

(8)

Term αi is a known constant, thus in order to mini-

mize privacy loss, we seek the minimum value of a linear

sum with non-negative coefficients. The minimum de-

pends on the user strategy probabilities. This value is

minimal when:

∑
∀j∈argminj αj

rj = 1,
(9)

which means one of the following cases:

– If | arg minj αj | = 1. Setting rj = 1 where j =

arg minj αj , which is the equivalent of using a single

pure strategy.

– If | arg minj αj | > 1. Setting
∑
∀j∈argminj αj

rj = 1,

which is the equivalent either of using multiple spec-

ified strategies in an arbitrarily mixed way, or select-

ing one pure strategy from them.

�

Surprisingly, the conclusion of Theorem 2 contra-

dicts to what we found for strong attackers: for weak

attackers it is advised to use pure strategies instead

of mixed ones. In specific cases, when there are multi-

ple, equally good choices, mixed strategies can be based

based on those strategies.

We note an interesting possible extension of this

model. We could allow a third state with a positive

probability r0, when the sensitive information is not in-

cluded any of the datasets. This extension would appear

in decreasing all other ri values (∀i > 0) that appear

in Eq. (7), implicitly decreasing the expected privacy

loss value, too. Introducing such a state would mathe-

matically suggest that users should maximize r0, which

is consistent with the common sense saying that if you

want to have maximum privacy do not disclose sensitive

content.

5.4.2 Example 1: Minimizing Cost in a Simple Case

In the following we provide a couple of examples demon-

strating the use of the model, and we assume that the

cost u−n does not differ for identities, and for keeping

the calculations simple we use the cost uniformly as

u−n = 1. In the first example we demonstrate the use of

Eq. (7), with a single user having two identities (y = 2)

in a single dataset.

For all combinations of m, the qm vectors can be

defined as in Table 2. By using Table 2 and Eq. (7), the

cost of privacy loss is characterized as:

Ew[un] =P1 · (1− P2) · r1 · q1 + (1− P1) · P2 · r2 · q2
+P1 · P2 · (r1 · q3 + r2 · q4)

(10)
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Next let us calculate user strategy for the case of

q1 = q3 = q and q2 = q4 = 1−q, i.e., the probability for

the attacker choosing an identity is constant if it is dis-

covered. As we have only two identities in this example,

the user decision can be modeled as r1 = r, r2 = 1− r,
leading to:

Ew[un] =P1 · (1− P2) · r · q
+(1− P1) · P2 · (1− r) · (1− q)
+P1 · P2 · (r · q + (1− r) · (1− q))

(11)

This can be further simplified to:

Ew[un] = (P1 · q − P2 + P2 · q)︸ ︷︷ ︸
A

·r + P2 − P2 · q
(12)

Eq. (12) reveals advised user strategies. As it is a

linear function of r, thus the minimum points can be

calculated depending on A: it is either at r = 0 if A > 0,

at r = 1 if A < 0, or at any points if the function is

constant (A = 0). The latter case means that regard-

less of defense strategy there is no privacy breach. For

example this happens if q = 0 ∧ P2 = 0, i.e., vn\2 can-

not be found but the attacker never chooses vn\1. Two

similar cases exist: P2 = 0 ∧ (q = 0 ∨ P1 = 0), and

P1 = 0 ∧ q = 1.

Given the calculation above, the user can compute

her strategy for setting r if she knows (or at least have

an approximation) of the parameters.

5.4.3 Example 2: Minimizing Cost Against Naive

Attackers

Now consider a naive attacker and a user having two

identities (y = 2) in a single dataset. For this case we

give the example qm vectors in Table 3 describing the

naive attacker decisions. Here, for the sake of simplicity,

we assumed that P1 + P2 ≤ 1, but otherwise we could

have used P1

P1+P2
and P2

P1+P2
.

Modeling user decisions as r1 = r, r2 = 1 − r the

cost of privacy loss can be given as:

Ew[un] = (P1 − P2) · (1 + P1 · P2)︸ ︷︷ ︸
B

·r + P2 − P1 · P2

+ P1 · P 2
2

(13)

The sign of B depends only on P1 − P2, as the sec-

ond term is always positive. Thus when P1 > P2 the

minimum point is at r = 0 and the sensitive informa-

tion should be always assigned to vn\2. For P1 < P2

it should be assigned to vn\1 (r = 1). Strategies pro-

posed by the model follows the common sense again:

hide he information in the identity that is harder to be

recovered.

Let us take another simple example where the at-

tacker decision is made accordingly to a coin flip in

the case of m = [1 1]. This modifies Table 3 as

q[1 1] = [0.5 0.5]. Here the expected cost of privacy

loss is as follows:

Ew[un] = (P1 − P2)︸ ︷︷ ︸
C

·r + P2 −
1

2
· P1 · P2 (14)

Having term C, the decision cases are the same as

in the previous example with B.

5.5 Most Likely Scenario: Attacker Strategy Unknown

In case of the k-anonymity setting, ideally the expected

privacy loss is

Ek[un] =
u−n
k
, (15)

as according to the k-anonymity definition there

should be at least k entities with the same quasi-

identifier (including the user). However, in Section 5.6

we discuss why we have to deal with less favorable cases

often.

Now, let us seek an appropriate user strategy for

the y-identity model against unknown attackers. From

this strategy, we can reasonably expect at least a similar

level of expected privacy loss compared to k-anonymity.

In order to have that, we propose to use the equilibrium

strategy ri = 1
y , and show that it is sufficient.

Theorem 3 Given the attacker model but with no re-

strictions to the attacker type, using ri = 1
y (∀i) as a

mixed strategy has a threshold for the expected privacy

loss as

E[un] ≤ u−n
y
.

Proof In order to satisfy the theorem, the following cri-

teria needs to be satisfied for strong and weak type of

attackers:

Es[un] ≤ u−n
y

and Ew[un] ≤ u−n
y
. (16)

The expected privacy loss in case of strong attackers

can be easily calculated, and it satisfies this criteria as

it is:
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Es[un] =
u−n
y
. (17)

Let us check the expected privacy loss for weak at-

tackers by substituting ri = 1
y to Eq. (7):

Ew[un] =

(∑
∀m

(∏
∀j

((1−mj) + (−1)(1−mj) · Pj)

·
∑
∀i

qmi

))
· u
−
n

y

(18)

However, due to
∑
qmi ≤ 1, an upper estimate can

be given when
∑
qmi = 1:

Ew[un] ≤ u−n
y
·
∑
∀m

(∏
∀j

((1−mj) + (−1)(1−mj) · Pj)
)

(19)

Due to the construction of m, the sum adds up all

possible combinations of Pj and (1 − Pj) (∀j), which

eventually sums up to 1. Therefore we have:

Ew[un] ≤ u−n
y
, (20)

which, with Eq. (17), satisfies the criteria for the

theorem according to Eq. (16). �

Theorem 3 drives us to interesting conclusions. It

shows that despite generally pure strategies are pro-

posed in case of weak attackers, it is yet worth follow-

ing the equilibrium strategy proposed against strong

attackers: then the expected privacy loss would be at

most as high as for k-anonymity.

5.6 Comparison with k-anonymity and Risk Mitigation

In the k-anonymity model, there are k structurally iden-

tical users, therefore one could be chosen with probabil-

ity 1
k . While the expected loss of the y-identity model

can be upper bounded with the expected loss for k-

anonymity, the risks are not equal for all identities of

the user. Let us demonstrate this on a simple example.

Let suppose there is a user who has y = 5 identities, and

∀i ≤ 4 : Pi � P5. The user then randomly assigns the

sensitive attribute to one of the identities with r = 1
5 .

However, while vn\5 has the same chance r as the other

identities, getting v?n\5 is risky: it is very likely that even

a naive attacker would compromise the privacy of the

user vn.

These kind of risks can be easily mitigated if Pi
values are known. For instance by creating multiple

identities for artificially establishing k-anonymity with

a lower k setting for the related identities. This could

mean doubling the identity for vn\5 by introducing a

structurally equivalent vn\6 but with different sensitive

attribute.

Or, if possible, k-anonymity could be established by

aligning partial identities to the neighborhood. The dif-

ference here to Algorithm 1 is that parameter c is a

constraint defined by the neighborhood, not chosen by

the user. Fortunately, according to our measurements

described in Section 5.7 simply using a high number

of identities can help to keep all Pi values significantly

low.

However, there is a serious problem with the k-

anonymity model that we managed to eliminate in our

y-identity model. As in the k-anonymity model it is not

the user who controls sensitive values, this can cause

problems. For example, if there are m users in the k

set with the same sensitive attribute, the probability

of privacy loss increases from 1
k up to m

k . Generally

speaking, the if the attacker has an apriori general dis-

tribution on the possible values of the sensitive value,

this can be fine-tuned by the distribution observed in

the k set of users. In the y-identity model the user is

allowed to set an arbitrary distribution for the sensi-

tive values where such problems can also be taken into

account.

5.7 Evaluating the Predictability of Node Discovery

Here we present a method for estimating the discovery

probabilities of nodes. We work with a slightly mod-

ified version of Nar09 that eventually provides lower

estimates of discovery probabilities. The drawback of

Nar09 is that it can only assign a single identity of

vn\i ∈ Gtar to vn ∈ Gsrc as a match, and according to

our measurements, the algorithm is quite deterministic

in this: if it gives µ(vn) = vn\i once, then it will yield

the same match with high probability in subsequent

runs. Therefore we would not have any information on

the finding probability of other identities.

In order to solve this problem, we committed the fol-

lowing modification. We iteratively run measurements

for ∀vn\i ∈ λG(vn). In each round we removed ∀j 6=
i : vn\j , and then run Nar09 10 times and accumulate

node discovery scores as S(vn\i) =
∑
s(vn, µ). This re-

sulted in an accurate lower estimation how easily each

identity can be found; obviously, this can be topped by

future algorithms or attackers using a wider range of

auxiliary information than topology.
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In our experiments, we run these measurements on

perturbed datasets of two types (derived for all three

networks). In the first case we applied the basic model

with y = 2 (uniform edge sorting), and in the second

case we applied the best model with y = 5 (random

deletion). We used Vids = 0.1. Next we randomly se-

lected 100 nodes from all six datasets having exactly

y = 2 or y = 5, and run the aforementioned simulations

regarding the selected nodes. Our results are summa-

rized on Fig. 3.

We used random.25 and the top seeding methods

for the re-identification of users having two identities.

Fig. 3a shows that results depend on the seed method,

and the top method produced more consistent results,

resulting in more cases when both identities were always

found (14.33% of all). While the random.25 method

had less of such cases (12.6%), it was able to find both

identities for more nodes, but not consistently (17.6%).

All in all, identity separation could be reversed approx.

15% of all cases, which ratio worth considering.

The best model setting with y = 5 provided more

privacy friendly results. The modified Nar09 (initialized

with random.25) could correctly re-identify identities

only in 7.3% of all cases, and in 2% re-identifications

were false matches. We observed no mixed cases hav-

ing some identities correctly, and others falsely identi-

fied. These results shed light on the reason behind why

identity separation with 5 identities produced good re-

sults in previous measurements: these cases have low

re-identification rates and even if there is correct one,

only a few of the identities are likely to be found. To be

exact, the probability that a partial identity was found

at least once was 2.83% (S(vn\i) > 0), and only 1.72%

of identities was always found (S(vn\i) = 10).

Measurements of these kinds are appropriate for es-

timating the probability of re-identification for identi-

ties. However, there are two problems: the user rarely

knows the whole network, and results can also depend

on the used seeding and attack method, which cannot

be certainly known apriori. It would be rational to limit

the required user knowledge to a two-hop neighbor-

hood; however, using only such a limited knowledge, we

managed to succeeded in approximating these probabil-

ities only in small networks (e.g., few thousand nodes),

which we would not consider lifelike. Fortunately, one

does not need to know these probabilities in order to

have significant protection. Our results indicate that

using five identities is strong enough against naive at-

tackers, and using the strategy proposed in Section 5.5

should be adequate in other cases.

Finally, these measurements are also interesting

from an adversarial point of view, too. Theoretically,

the attacker can also run a similarly modified version of

Nar09 in order to find all partial identities: after find-

ing an identity, it is removed from the network, and

the attack is run again. This could be iterated until

there is no match for the selected node. After finding

all such matches identity separation could be (partially)

reversed. According to our measurements (shown on

Fig. 3) this can be done only to a very small fragment

of the nodes using identity separation with Nar09, but

this finding can open an interesting line of future work.

6 Applications of Results

Overall, we believe our results fill a significant gap in

the research of protecting user privacy against struc-

tural re-identification attacks. There are very few con-

tributions proposing (and analyzing) user centered ap-

proaches, that could be applied to existing services.

However, adopting the proposed identity separation

strategies manually is difficult, and users cannot be ex-

pected to manage several partial identities on their own.

Therefore, our results should be used to formulate the

core principles for designing privacy-enhancing identity

management systems that support user behavior in so-

cial (or related) services. As there are also several tech-

nical issues to be handled in parallel, identity manage-

ment should be supported by an identity management

tool, implemented as a browser extension or as a stan-

dalone application.

For online social networks one could think of a

browser extension as the IDM tool. On a unified user

interface, this tool should provide parallel logged-in ses-

sions with different social profiles to support identity

separation; thus for changing identity the user would

not need to be asked to log out and log in again. Paral-

lelism could be achieved by building on anonymous web

browsers [19, 41] in case of web-based social networks.

Each separated identity handled by this software would

be shared with a group of contacts, where the identity

management software sorted connections between dif-

ferent profiles. Our results in this paper provide guide-

lines how contacts should be handled; e.g., some con-

tacts should be made hidden, while others could be

added to multiple profiles.

On the user interface, contacts should appear in

their own group (e.g., similar to circles in Google+).

Groups can be either related to a single separated iden-

tity or consisting multiple of such identities. In the lat-

ter case, grouping multiple identities can improve user

experience and ease use in general, while having multi-

ple identities can increase the level of privacy. However,

as separated identities are quasi fake accounts, users

need to exchange valid profile information to maintain
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(a) We measured re-identification frequency by initializing
with the random.25 and the top methods. The figure shows
that results depend on the seed method used by the attacker,
as in the case of the top method re-identification rates were
higher and results were more consistent. As it is shown, iden-
tity separation could be reversed certainly only in less than
15% of all cases.
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(b) We used random.25 seeding on the datasets with y = 5.
Nar09 could re-identify correctly identities only in 7.3% of
all cases (with no error), and in 2% re-identifications were
false matches (with no correct ones). The figure shows results
having the values in the score vector in a descending order;
corresponding values are connected with lines. Marker sizes
are proportionate to the number of cases we had.

Fig. 3: Results for finding partial identities. In both cases 100 identities were selected from the Epinions, Slashdot

and the LJ66k networks having (a) y = 2 and (b) y = 5 separated identities. The figures indicate the relative

frequency of finding each identity.

the functionality of social networks: undercover identi-

ties should reveal themselves to contacts to ease com-

munication. The IDM tool could do this automatically

by using cryptographic protocols between users who use

the same software.

7 Conclusions and Future Work

In this paper, we provided details on how identity sep-

aration can be used to tackle re-identification in social

networks effectively. Naively using identity separation

and assigning a sensitive value to one of the new identi-

ties (without further consideration) cannot provide any

assurance whether the attacker would find it or not.

As a possible additional improvement, we analyzed an

applied variant of k-anonymity, and found that this

model cannot be implemented effectively in the cur-

rent context due to the diversity of network structure.

As an alternative, we proposed the y-identity model,

which introduced several improvements compared to k-

anonymity, beside the fact that it can be applied ef-

fectively within the context of our discussion. We in-

troduced a reasonable attacker model for the problem,

and proved that even if the attacker type is not known

(as it happens in real life) and the user acts according to

the proposed strategy, the expected privacy loss will be

lower or equal compared to the case when k-anonymity

can be ideally applied. We additionally discussed that

the y-identity model fixes a serious vulnerability of k-

anonymity.

We found multiple issues in addition that could be

interesting as future work. For example, it might be

interesting to consider the re-identification algorithm

as a part of the decision making process, and to see

how the whole process could be analyzed as a game.

We find the development of re-identification algorithms

to be the most interesting new line of research: how new

algorithms, or variants of existing ones could be used

to re-align separated user identities.

Our threat model in this paper was restricted to

have regular social networks as the background knowl-

edge of the attacker. However, theoretically an attacker

could obtain background knowledge that contains iden-

tity separated users, which he could use to reveal hid-

den attributes in the identity separated anonymous net-

work. Fortunately, if the user adopts identity separa-

tion in the right way, the attacker success can be lim-

ited even in this case: the adversary could only link a

partial identity to the anonymous identity. This could

mean no privacy harm if the partial identity was run

under a pseudonym. We must note that the y-identity

model proposed in this paper provides feasible protec-
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tion for such scenarios also. Here the future work should

focus on finding appropriate strategies for using non-

cooperative identity separation in order to prevent leaks

when the attacker background knowledge have identity

separation, too.
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and Tamás Holczer for reviewing draft versions of this

paper, and for engaging us in meaningful discussions.

We would like to also thank the useful comments and

suggestions of Gergely Biczók, and also for reviewing
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Algorithm 1: (k, 2)-anonymity with edge modification

1: procedure K-AnonymizeNode(G, vi, c, k)
2: Vi ← G.nbrs(vi)
3: V 2

i ← G.nbrs(Vi) \ {vi}
4: c′ ← c, Vk ← {}, Ek ← {}
5: while c′ ≥ 1 and |Vk| = 0 do
6: κ← {} . Groups having c′ common neighbors with vi

7: for all vj ∈ V 2
i do

8: Vi∩j ← Vi ∩G.nbrs(vj)
9: if |Vj | = c and |Vi∩j | = c′ then

10: κ[Vi∩j ]← κ[Vi∩j ] ∪ {vj}
11: end if
12: end for
13: for all κ[Vi∩j ] if |κ[Vi∩j ]| ≥ k − 1 do
14: if c = c′ then . k-anonymity without modification

15: Vk ← κ[Vi∩j ]
16: break
17: end if
18: ψ ← {} . Get new neighbors related to the k-group

19: for all vj ∈ κ[Vi∩j ] do
20: Vj\i ← G.nbrs(vj) \ Vi \ κ[Vi∩j ] \ {vi}
21: for all vl ∈ Vj\i do
22: ψ[vl]← G.nbrs(vl) ∩ κ[Vi∩j ]
23: end for
24: end for
25: η ← {} . Filter applicable groups and neighbors

26: for all ψ[vl] do
27: for all γ ⊆ ψ[vl] if |γ| = k − 1 do
28: η[γ]← η[γ] ∪ {vl}
29: end for
30: end for
31: if ∃η[γ] that |η[γ]| ≥ c− c′ then
32: pick η[γ] where |η[γ]| ≥ c− c′
33: Vk ← γ
34: Ek ← η[γ]
35: break
36: end if
37: end for
38: c′ = c′ − 1
39: end while
40: return Vk, Ek . Existing and new neighbors for k-anonymity

41: end procedure


