
A volume in the Advances in E-Business
Research (AEBR) Book Series

Katalin Tarnay
University of Pannonia, Hungary & Budapest University of Technology
and Economics, Hungary

Sandor Imre
Budapest University of Technology and Economics, Hungary

Lai Xu
Bournemouth University, UK

Research and
Development in
E-Business through
Service-Oriented
Solutions

Lindsay Johnston
Joel Gamon
Jennifer Yoder
Adrienne Freeland
Myla Merkel
Kayla Wolfe
Christina Henning
Jason Mull

Research and development in e-business through service-oriented solutions / Katalin Tarnay, Sandor Imre and Lai Xu,
editors.
 pages cm
 Includes bibliographical references and index.
 Summary: “This book highlights the main concepts of e-business as well as the advanced methods, technologies, and
aspects that focus on technical support for professors, students, researchers, developers, and other industryexperts in order to
provide a vast amount of specialized knowledge sources for promoting e-business”--Provided by publisher.
 ISBN 978-1-4666-4181-5 (hardcover) -- ISBN 978-1-4666-4182-2 (ebook) -- ISBN 978-1-4666-4183-9 (print & perpetual
access) 1. Service-oriented architecture (Computer science) 2. Data mining. 3. Electronic commerce. I. Tarnay, Katalin.
II. Imre, S?ndor. III. Xu, Lai, 1970-
 TK5105.5828.R47 2013
 658.8’72--dc23

 2013009512

This book is published in the IGI Global book series Advances in E-Business Research (AEBR) Book Series (ISSN: 1935-
2700; eISSN: 1935-2719)

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the
authors, but not necessarily of the publisher.

Managing Director:
Editorial Director:
Production Manager:
Publishing Systems Analyst:
Development Editor:
Assistant Acquisitions Editor:
Typesetter:
Cover Design:

Published in the United States of America by
Business Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2013 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

 Library of Congress Cataloging-in-Publication Data

134

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7

Károly Boda
Budapest University of Technology and

Economics, Hungary

Ádám Máté Földes
Budapest University of Technology and

Economics, Hungary

Gábor György Gulyás
Budapest University of Technology and

Economics, Hungary

Sándor Imre
Budapest University of Technology and

Economics, Hungary

Tracking and Fingerprinting
in E-Business:

New Storageless Technologies
and Countermeasures

ABSTRACT

Online user tracking is a widely used marketing tool in e-business, even though it is often neglected
in the related literature. In this chapter, the authors provide an exhaustive survey of tracking-related
identification techniques, which are often applied against the will and preferences of the users of the
Web, and therefore violate their privacy one way or another. After discussing the motivations behind the
information-collecting activities targeting Web users (i.e., profiling), and the nature of the information
that can be collected by various means, the authors enumerate the most important techniques of the
three main groups of tracking, namely storage-based tracking, history stealing, and fingerprinting. The
focus of the chapter is on the last, as this is the field where both the techniques intended to protect users
and the current legislation are lagging behind the state-of-the-art technology; nevertheless, the authors
also discuss conceivable defenses, and provide a taxonomy of tracking techniques, which, to the authors’
knowledge, is the first of its kind in the literature. At the end of the chapter, the authors attempt to draw
the attention of the research community of this field to new tracking methods.

DOI: 10.4018/978-1-4666-4181-5.ch007

135

Tracking and Fingerprinting in E-Business

INTRODUCTION

Many Website operators involved in end-user
oriented e-business have an interest in monetizing
their user base (e.g., by realizing as many clicks
on their advertisements as possible). One way of
achieving this goal is collecting diverse informa-
tion about the user (or profiling her), the vehicles
of which are technologies that can be used for
identifying returning visitors, and those that infer
sensitive information (such as browsing history)
that users are not necessarily willing to disclose
(e.g., purchase preferences). This controversial
method may be a necessity for better serving the
needs of online customers, but it often goes beyond
user demands, and is used for business purposes
against the will of the clients.

It is not surprising that certain users are
concerned about pervasive profiling. In fact,
this problem has been discussed from so many
viewpoints in academia that not only effective
technological, but also more or less effective leg-
islative countermeasures have been implemented
in order to mitigate the privacy risks arising from
the proliferation of a subset of profiling-related
technologies. That said, this chapter is inspired
by the rest (primarily by fingerprinting attacks),
for which neither defensive technology nor the
law seems to be able to keep up with the pace
of development dictated by pro-profiling actors,
leaving users of the Web powerless against and
vulnerable to them.

PROFILING AND USER
PRIVACY ON THE WEB

There are several motives of profiling users on
the Web. For instance, an enormous number of
Web services can be accessed for free; however,
contrary to how it looks (or is communicated),
free access often comes with a greater sacrifice
of user privacy, as many of these companies gain
revenue from profiling-related activities, such

as pursuing behavioral advertising or monetiz-
ing user profiles by other means. According to
the report of IAB Internet Advertising Revenue
Report (IAB, 2012), the advertising revenues set
a new record at $8.4 billion in Q1 2012, clearly
showing the significance and the growth of the
advertising industry.

In two recent studies, Goldfarb & Tucker
(January and May, 2011) concluded that targeted
advertising can successfully influence individuals
in favor of buying a product, and targeted advertis-
ing has a significant positive (economic) impact
on advertising. These claims are consistent with
the ever-increasing presence of Web tracking
techniques (the most used tools for profiling) and
the revenues the industry reached in 2012, presum-
ably with a continuously increasing proportion
of behavioral advertising. By summarizing the
measurements of Krishnamurthy & Wills between
2006 and 2012 (Krishnamurthy & Wills, 2006;
2009; Krishnamurthy, 2010), Mayer & Mitchell
(2012) highlighted that the coverage on top sites
of large tracking companies increased during these
years, and so did the number of trackers per page.
Today, researchers estimate that there are track-
ers capable of monitoring more than one fifth of
user activity while browsing online (Roesner et
al., 2012).

However, as can be expected, tracking for
targeted advertising is not favored by users. A
Harris Interactive poll (Krane, 2008), a TRUSTe
survey (2009), and a nationally representative
telephone survey in the USA conducted by Turow
et al. (2009) uniformly confirmed that the majority
of individuals (around 60% in all cases) found it
uncomfortable when they faced advertisements
on Websites adjusted to their preferences by pre-
viously observing their online activities. A more
recent online survey conducted by McDonald &
Cranor (2010) also confirmed this result with
55% of respondents rejecting targeted advertising;
another recent survey conducted by TRUSTe in
partnership with Harris Interactive (2011) reported
a higher rate of respondents, namely 85%, who

136

Tracking and Fingerprinting in E-Business

would not consent to being tracked for targeted
advertising.

Nevertheless, targeted advertising is not the
only goal of tracking and profiling; there are several
other commercial use cases. Besides monetizing
profiles in trades (i.e., exchanging large databases
of pseudonymous profiles), they can be utilized
to provide additional user interface features; for
example, recommendations on news or Web shop
items, customized user interfaces, or to facilitate
price discrimination (dynamic pricing, i.e., adjust-
ing price tags for customer price sensitivity for
profit maximization of the vendor).

The case of Amazon.com–namely when the
company offered the same DVD at different prices
for different customers–is a frequently cited ex-
ample of dynamic pricing (Davis, 2000). After
customers discovered pricing differences while
discussing their experiences in online forums,
Amazon had to remove this feature and apologize
for their experiment. Amazon claimed that prices
were merely random, instead of being tailored for
customer profiles.

Web users relate a bit ambivalently to dynamic
pricing. Although it is a known and unpopular
feature among them (Cranor, 2003), it becomes
rather popular when it is communicated in the
form of discounts: according to the survey of
McDonald & Cranor (2010), 80% of respondents
would consent to tracking to receive discounts
tailored for their purchase interests, suggesting
that price discrimination is more acceptable if it
is communicated as a reward or bonus rather than
a way of invading privacy.

Finally, we mention security, where tracking
(and profiling) is applied in order to identify po-
tential malicious users and prevent intrusions. In
practice, this is pursued by many security-sensitive
companies, such as banks or credit card compa-
nies. For instance, ThreatMetrix™ Cybercrime
Defender Platform uses device identification to
identify clients when they detect fraudulent access
to prevent further attacks (ThreatMetrix, 2012);
similarly, the Oracle Adaptive Access Manager

fingerprints all types of devices (Oracle, 2011).
Somewhat in contrast with user attitude towards
commercial tracking, a survey of TRUSTe &
Harris Interactive (2011) shows that 42% of re-
spondents would consent to tracking to enhance
security and to detect frauds. It must be noted that
such identification can be used for quite different
and questionable purposes, such as identification
for censorship or surveillance, too.

Who Needs Users to be Identified?

There are several actors in the online era arguing
against or in favor of identification. Normally,
the only participant arguing against is the user
herself, for whom identification is an undesired
feature, up to the point when it brings benefits (it
unlocks extra functionality or the user gains extra
credit). On the other hand, there are numerous
other participants having their own objectives and
goals, who want users to be identified regardless
of their privacy preferences.

As it has become clear so far, advertising and
marketing companies, and other parties pursuing
related activities are the most prominent actors
(e.g., search engine optimization, retargeting,
analytics services). Profiles can also be used in
web shops for product recommendation systems,
or for assisting pricing strategies, but arbitrary
service providers may use profiles and tracking
to enhance the functionality of their services.
Among many others, social networks, content
providers and distributors, service platforms,
hosting services belong to this category.

Data collectors and traders monetize pro-
files directly. Identification also plays a strong
role in censorship and surveillance, and–as dis-
cussed previously–also in security; for example,
identification can help prevent click frauds by
limiting the number of paid clicks per client per
advertisement (Schmücker, 2011). On the other
hand, malicious parties, such as identity thieves,
phishers, and other kinds of online stalkers may
also find profiles useful.

137

Tracking and Fingerprinting in E-Business

The Process of Profiling

In the early years of the Web, tracking was the
only way to profile users. Attributes learned by
tracking are called implicit data, since these are
not expressed by the user, but deduced from her
actions. In the early 2000s, with the spread of
blogs, social networks, and so forth, and the social
content contribution to the services of the Web
2.0 era, another source of information became
available, called explicit data, referring to self-
expressed information, collected by other means
(e.g., using web crawlers) for extending profiles.
Development of search engines catalyzed this
process by supporting the access to public sources
for explicit data, to the point where the spread of
information became real time (e.g., Shankland,
2010). Instant accessibility and the emergence of
a variety of “Web and content archiving” services
(e.g., Fitzpatrick, 2012), had a negative effect on
user privacy, as it simply eliminated the choice
of revocation.

Classification of Information Sources

In their work, Gulyás et al. (2012) categorize
profiling sources into three categories (complex
profiling techniques may use multiple of these):
services of information superpowers (large com-
panies having a large service portfolio capable of
capturing a significant fragment of user activity),
public data sources, and tracking. Here, we further
refine their classification by categorizing sources
regarding the data types and the way users typi-
cally interact with these sources. (It must be added
that exceptional, but less relevant cases do exist;
for example, first party trackers can theoretically
be realized, but the advertising business is based
rather on third-party trackers.) Our classification
is shown in Table 1.

According to this classification, a social net-
working site with a social widget in widespread
use over the internet–such as Facebook’s Like
button–is classified as both using sources of an

information superpower and tracking users. N.b.
that the case of Facebook may be a bit more
complex, as according to an earlier version of
their privacy policy, the social service reserved
the right to crawl public data sources in order to
extend their users’ profiles (Gulyás, 2009).

The Three Steps of Profiling

The implications of tracking become visible after
understanding the context of identification and
related economic activities (i.e., how profiling is
performed). Identification itself does no harm to
user privacy; the question is how identification is
used. Implication of tracking techniques discussed
later in this chapter only differ in the extent of
identification (i.e., more generic identification
implies larger profiles that has a wider range of
use): while some techniques identify the user
only in the same browser (e.g., tracking cookies,
CSS-based history stealing attacks) or the same
device (e.g., cross-browser fingerprinting, Flash
PIEs), others achieve device-independent personal
identification (e.g., real-world identification via
history stealing, biometric fingerprinting).

The scheme of the process of personal data
collection is depicted on Figure 1. The goal of
the process is to create fine-grained user profiles
to be used or sold. In the first step, profilers use
the previously-discussed information sources for
collecting information, the data from which is
processed, combined and further refined in the
second step. In step three, data can be monetized
by several means.

During the collection process, numerous types
of data are logged to profiles–we just highlight a
few examples. Simply put, trackers can analyze

Table 1. Classification of profiling sources

Implicit data Explicit data

First party Services of information superpowers

Third party Tracking Public data sources

138

Tracking and Fingerprinting in E-Business

the visited Websites from different perspectives,
such as regarding their content (for contextual
advertising), their meaning (for semantic advertis-
ing), or the attitude of the creator towards the
content itself (for sentiment analysis)–information
that is rather static. That said, behavior profiles
can also include clickstream information (i.e.,
how the user navigates through sites, to determine
where she is off the track the advertiser planned,
or to predict future behavior, e.g., to determine
the willingness to order an item online)Van den
Poel & Buckinx, 2005)). There are trackers that
operate link shortening services and provide
content sharing widgets in order to observe social
sharing connections (Regalado, 2012). In our
opinion, this trend will gain momentum, and
advertisers will extend their view to collect even
more metadata on daily routine, (social) behavior
and connections.

What Do they Collect?

However, trackers also reach towards a lower
metalevel. Jang et al. (2010) report several cases of
mouse, keyboard, and clipboard tracking. Within
the Alexa top 1,300 Websites, they found such
tracking in 115 cases, where the tracking happened
without any visual feedback to the user. Of these
sites, 7 used the behavior tracking service of tynt.
com, which reported mouseover and copy events,
and also transferred the copied text to tynt.com.

Jang et al. also mention another tracker company,
ClickTale, who create an aggregate heatmap of
mouse movements. According to ClickTale’s web-
site1, in addition to heatmaps, they record mouse
clicks, scroll reach, keystrokes, and offer reports
based on the analysis of the data. Besides, Jang et
al. note that many sites in their experiments use
their own tracking techniques instead of using
external services.

Service providers, and especially information
superpowers, are in an even better position, as they
can collect metainformation of the habits of their
users. For instance, Google can be aware of their
users’ acquaintances (via Gmail and Google+),
daily routine (with Google Calendar), interests (via
Google Reader), and if Google Search is set as the
home page of a browser, Google can estimate when
the computer is first turned on, and how long it is
operated. By utilizing geolocalization techniques,
even home and work location can be determined,
which, when coupled together, can be used for
unique identification (Golle & Partridge, 2009).

Privacy Implications of Identification

When a user is identified and tracked, her activi-
ties are linked together in her profile, meaning
a greater loss of user privacy for many reasons.
For example, a profiled user can be influenced
in her buying decisions, or her search results can
be biased according to business objectives. A

Figure 1. The process of collecting, processing and using different types of data

139

Tracking and Fingerprinting in E-Business

profiled user is tied to her past actions, which can
be used for abuses, denigration, or may simply
cause uncomfortable situations.

As an example, let us imagine a father looking
for gifts for his daughter’s birthday. After spend-
ing a few hours of searching online and visiting
some related sites, he leaves his laptop on his desk.
Later, his daughter arrives and uses his laptop to
check out a website. We could imagine how sur-
prised she would be to see the specific gift-related
advertisements along the site. Clearly, the father
would have liked to separate his gift-searching
activities from regular ones.

The goal would be to separate activities con-
ducted on different sites, or–more formally–to
reach the unobservability of the actions of the
user (See Figure 2). Regarding a specific site visit,
unobservability means anonymity towards this
site (i.e., the visitor cannot be identified within
the group of visitors), plus undetectability of the
visit for both other sites and other Web actors
(Pfitzmann & Hansen, 2010). At this time, these
goals cannot be accomplished by using default Web
browsing software (not even in private browsing
mode; Aggarwal et al., 2010); some success, how-
ever, can be achieved by using anonymous Web

browsers, such as Tor and JondoFox, which are
reaching for such high aims (Perry et al., 2011).

Penetration of User Tracking
Techniques

We differentiate between within- and cross-site
trackers only; however, further refinement of
classification is possible regarding the state-of-
the-art tracking landscape (Roesner et al., 2012).
In the case of the first type of trackers, the track-
ing cookie is owned by the visited site, and–since
the tracker is never visited directly–the cookie is
intentionally leaked for tracking (which is referred
to as cookie handover). Cross-site trackers own
the cookie themselves, enabling tracking user
activities over site boundaries (the cookie can
be set from a first- or third-party position, too).

However, both cooperation between trackers
and combination of these types have been reported
recently (Roesner et al., 2012). Cooperating track-
ers share tracking information–such as identifiers
and location information upon a visit–which means
that a tracker that is not present can learn about it.
For instance, Roesner et al. mention the example
of admeld.com leaking its tracking cookie and the

Figure 2. The scheme of undetectable web browsing: a request is unobservable for all actors, and
anonymous towards communication partners (i.e., websites). Ideally, this means no actors (users and
Websites) can decide whether a user made a request or not, and no Websites can specify which user
made the request it received (responses are proxied through the anonymous Web browsing service).

140

Tracking and Fingerprinting in E-Business

top level page URL to turn.com. Cooperating track-
ers can seem to be misleadingly privacy-friendly,
as for cooperating parties a single detector that
invokes others later or sends feedback on detours
can have a larger implication on privacy than
it seems. Combination of tracker types implies
that a within-site tracker gains cross-site tracker
capability: the within-site tracker is embedded
into the detector code of the cross-site tracker (the
cookie is owned by the cross-site tracker). In this
case, the cross-site tracker learns environmental
information of the user via its tracker asset, but
identifies the user via the within-site tracker.

Empirical measurements on tracking tech-
niques indicate significant penetration. Gomez
et al. (2009) analyzed 393,829 unique domains
(collected by the users of the Ghostery Firefox
plugin) of which 88.4% used Google Analytics (a
within-site tracker), and top 50 Websites contained
at least one tracker, but some had as many as 100.
Ayenson et al. found Google Analytics to be pres-
ent at 97 of the QuantCast.com top 100 sites in
2011. In their recent work, Roesner et al. (2012)
also confirmed significant tracker presence while
analyzing the Alexa top 500, as they found 7,264
instances of 524 trackers present on these sites.
According to their work, “tracker morbidity” is
depicted as the top 20 trackers being present in
26-297 sites in the top 500.

Trackers benefit from being visited as first-
party sites as they are allowed to set cookies
even when third-party cookies are blocked in the
browser agent. Although cross-site trackers are
usually not visited directly, there are two excep-
tions. First, social networking sites are visited
voluntarily for their services, and as confirmed
by the results of Roesner et al., some sites force
visitors to view them from a first-party position
(e.g., by opening a popup window or applying a
redirection chain). Clearly, both are used to cir-
cumvent third-party cookie blocking settings of the
browser agent, as in the case of insightexpressai.
com, mentioned by Roesner et al.

Penetration of social widgets is also worth men-
tioning. In May 2011, the presence of Facebook,
Google, and Twitter widgets was estimated at 33%,
25%, and 20% respectively among top 1,000 sites
(Efrati, 2011), but surprisingly, their presence
seems to stagnate. Roesner et al. measured the
presence of both Facebook and Google at around
30% among the Alexa top 500 sites, and Twitter
at 18.6%. In another recent work, Kontaxis et al.
(2012) estimate the presence of the Facebook
Like button at 35% among the top 10,000 sites
(in June 2012). However, widgets also provide
income for another group of services, namely
companies hosting embeddable widget collections
(e.g., AddThis), who fund their services from
selling data obtained by tracking visitors (Mayer
& Mitchell, 2012).

As revealed in this section, tracking is widely
adopted for tracking users. It is not realistic to
assume that these techniques are going to van-
ish in the near future; rather, on the contrary,
we expect them to spread further and to develop
new forms to walk one step ahead of consumers.
In the next chapters, we review currently known
and emerging techniques. We discuss storage-
based tracking methods first, and “storageless”
techniques–which are expected to dominate in
near future–afterwards.

BASIS OF TRACKING:
REGULAR TECHNIQUES

In the early years of the Internet, users were
identifiable uniquely by their IPv4 addresses, but
IP-based tracking soon became obsolete due to
the widespread use of network address translation
(NAT) and dynamic IP addresses, as in both cases
multiple clients may use the same address. Despite
its inaccuracy as an identifier, the IP address is still
usable when augmented with other information
(e.g., the user agent string), and can still play a
part in tracking as part of a unique identifier (Yen
et al., 2012). In addition, the IPv4 addresses are

141

Tracking and Fingerprinting in E-Business

widely used for visitor localization. Free databases
exist for pairing addresses with country-city loca-
tions, such as (IpToCountry, 2012), and research
indicates that even a finer-grained localization is
possible going down to street level (Wang et al.,
2011). The role of the IP addresses may change
in the future as IPv6 is expected to spread, since
its addresses are practically capable of covering
all existing and future devices, thereby eliminat-
ing the need for dynamic or translated addresses.

As IP addresses were not reliable anymore,
Websites and trackers started to store unique identi-
fiers on the visitors’ computers, in the storage of
their browsers, first in the cookie database. After a
while, an increasingly relevant proportion of users
started to delete cookies to opt out of tracking,
and coevolution has characterized web privacy
since then. When trackers develop new tracking
techniques, related protection mechanisms follow.
In this section, we review the classic storage-based
techniques.

Storage-Based Techniques

Cookies have some associated basic protection,
such as the same-origin policy: if a Website sets
a cookie, only the same site can read it later, al-
lowing the identification of returning visitors,
but not cross-site tracking. However, Website
operators soon realized that if they installed
Web bugs2 on multiple sites, they could easily
extend their reach. Web bugs are small, usually
1x1 pixel-sized invisible images, and based on a
simple mechanism. When the user visits a site,
and the content is loaded, the Web bug is down-
loaded from the third-party site (i.e., the tracker),
who has a chance to read and write cookies, and
can detect the first-party site address through the
referrer HTTP header. Therefore, identification is
possible, and the web bug owner can determine
particular attributes of the visitor in addition to
the IP address and browser agent information.
Subsequent tracking techniques usually leverage

the same principles with smaller modifications
(e.g., using scripts or frames).

Problems related to cookies can be observed
with other storage-based mechanisms, too. As we
have mentioned previously, some trackers leak
cookies intentionally, but malicious third parties
may also try to steal cookies, for instance by having
their scripts included into the site content, which
seems to be common: Yue & Wang (2009) found
that 66.4% of sites embedded external scripts in
their experiment. In addition, user-contributed
content can also contain cookie-stealing malicious
scripts (e.g., cross-site scripting). Cookies are
sent along with the request, and then, if they are
being transmitted without protection, they can be
subject to traffic sniffing3 or active sidejacking4.
Fortunately, in contrast to cookies, most stored
objects are not transmitted automatically (e.g.,
Flash cookies and HTML5 storages), and therefore
not affected by these threats.

As a relevant fraction of users soon started
deleting cookies, trackers moved to using rich
internet application storages, such as the Flash
(Local Shared Objects) and SilverLight (Isolated
Storage) storages. Both plugins are widespread
(respectively 95.78%, 69.33% according to
Stat Owl (2012), and their storages share some
characteristics with cookies, with additional ad-
vantages (for trackers). Being isolated from the
browser, these plugins allow the use of the same
identifier in multiple browser agents in parallel
(See Figure 3), and default expiration dates also
favor tracking–perhaps larger cookie sizes, too.
For Flash, cookie size starts from 100 KB (for
requests having a larger size, the user is asked for
permission), and permanent expiration is set by
default (Local Shared Object, 2012). In the first
years, lower awareness surrounded these tech-
niques, but nowadays users are more aware, and
there are standardized ways to control (and clear)
their storages such as the NPAPI ClearSiteData
(Chandna, 2011).

The first instance of announcing Flash cookies
being used for tracking, were the Persistent Iden-

142

Tracking and Fingerprinting in E-Business

tifier Elements (PIEs for short), which were an-
nounced in 2005 (Unitied Virtualities, 2005).
Later, Flash cookies were reported to be used for
“cookie respawning” (regenerating) cookies to
circumvent cookie deletion and user preferences,
and were found to be present on 54 of the top 100
sites (Soltani et al., 2009). Recent follow-up re-
search shows that Flash cookies are still present
on 37 of the top 100 sites (Ayenson et al., 2011),
but a lower rate was confirmed by Roesner et al.
(2012), as in their experiment only 35 of 524
trackers used Flash, and it was used as a backup
only in 9 cases. The latter authors highlight the
particular case of sodahead.com, where the Flash
backup cookie was even encoded.

Ayenson et al. (2011) additionally report that
trackers are also moving to HTML5 storages, as
they found that 17 of the top 100 sites used them.
The HTML5 storages allow larger storage (5 MB),
and similarly to Flash permanent expiration is set
as default. Roesner et al. (2012) find that only one

percent of the Alexa top 500 stored identifiers in
the HTML5 LocalStorage. However, they report
two cases where LocalStorage was used instead of
cookies, and a case where cookies were respawned
from LocalStorage.

Different layers of the browser cache are also
exploited for storing identifiers. A cache control
mechanism, e-tags (or entity-tags) is used as
backup for cookies, for instance, Ayenson et al.
(2011) mention kissmetrics.com, and Wramner
(2011) describes the use of e-tags in the tracking
mechanisms of TradeDoubler. In their intended
use, e-tags are used to determine if the online
document has changed compared to the local
cache, similarly to fingerprinting (hashing) docu-
ments for comparison. As a disadvantage (from
the viewpoint of a tracker), e-tags are harder to
handle, since reading and writing them requires
exact URL matches. On the other hand, e-tags
cannot be blocked with cookies, and they are
even available in private browsing mode. Another

Figure 3. Cross-browser tracking with Flash storage. After contacting the first site (1) a Flash based
Web bug is downloaded from the tracker (2). After the Web bug is loaded it sets (or reads if it exists) the
identifier (3) and sends it back to the tracker directly (4), augmented with profiling information (e.g.,
subject of site1.com). When visiting another site with another browser, a similar process is executed
(5-8), which uses the same storage.

143

Tracking and Fingerprinting in E-Business

control field, the last modified timestamp can also
be exploited similarly to e-tags, simply by giving
a unique date to each visitor.

Cached content can also be exploited for storing
identifiers. The evercookie (2010) also uses this
method: it draws the identifier on some pixels of
an image, and then makes the browser cache it.
In order to read the image, it is loaded onto an
HTML5 canvas, where images can be managed on
a pixel-level basis. Other content caches can also
be used to store identifiers, such as variables in Ja-
vaScript, or entity properties in CSS. Operational
caches are also available for tracking, such as the
cache of HTTP authentication cache (Grossmann,
2007), the HTTP 301 redirect cache (Bursztein,
2011), the HTTP Strict Transport Security cache
(Davidov, 2011), and the TLS session resumption
cache, including TLS session IDs (Perry, 2011c).

There are even more storages exploited for
tracking. The window.name property can store up
to 2 MB; nevertheless, it starts from a clear value
whenever a new window or tab is opened, and thus
is cumbersome to use for tracking (evercookie,
2010). Last but not least, the Internet Explorer
userData storage also emerged as an alternative
to the Flash storage (Benninger, 2006), and can
be used for tracking, as it provides a relatively
large storage (64 KB per page, and in total 640
KB per domain), and not cleared when temporary
files and cookies are removed.

It must be noted that many of the prior dis-
cussed techniques are often used in a combined
manner, such as in the case of the evercookie
(2010), replicating the identifier into as many
places as possible. Trackers also prefer to use
multiple storages at once; for example, Soltani
(2011) reported that kissmetrics.com used Flash
cookies, e-tags, and the HTML5 local storage to
respawn deleted cookies.

Further Privacy Issues and
Techniques Applied

The techniques discussed before can be applied
to RSS (or Atom) channels; this is referred to as
RSS tracking. In his recent thesis, Danis (2011)
analyzed the possibilities of applying regular
techniques to RSS channels, and found several
flaws in the implementations in browsers and
channel reader software. In our opinion, one of his
most important finding is that by using internal
frames (represented by the <iframe> HTML tag)
security precautions (e.g., JavaScript blocking) can
be bypassed easily, and, in addition, most reader
software allows loading third-party images by
default (with no options to block them), and also
accepts cookies via these images.

Danis analyzed the channels of 40 Web pages
selected from top listings, from which 11 displayed
tracking advertisements, and reported two particu-
lar cases (nydailynews.com and microsoft.com),
which used Web bugs to track their visitors, and
collected browser, plugin, and OS information.
Another major privacy problem of subscribing to
RSS channels via browser agents is that the feed
owner can observe the daily routine of subscribers,
can determine workplace and home locations. This
is also true in case of setting default home pages
in browsers (especially in the case of services of
information superpowers, such as Google search).

As another privacy threat, multiple sources of
information can be used to enrich profiles. The
browser itself provides information on several
settings and variables which can be used for finger-
printing (e.g., the user agent string, plugin names
and versions in an explicit list, screen resolution,
and time zone), and plugins such as Java and Flash
also leak identifying information on the operating
system, hardware, or user settings, from which
some–such as the OS information in Flash–cannot
be spoofed (The Simple Computer, 2012). Plugins
can also be used to evade the same-origin policy.

In addition, we highlight the example of URL
referers, which are usually used to indicate the

144

Tracking and Fingerprinting in E-Business

origin of the arriving user (in the form of an
URL). However, the URL referer also indicates
the URL of the host environment for images and
other embeddable content (Flash, Java, internal
frames), and can also indicate the keywords the
user searched for before arriving on the Website.
Lastly, we mention that all on-disk information
(especially traces left on public computers) is a
potential target to offline attacks via malware, and
therefore should be protected carefully.

HISTORY STEALING AND
COUNTERMEASURES

History stealing is a way of extracting a part of
the history of the browser–information which is
otherwise hidden from the prying eyes of a Web-
site operator. In our broader interpretation of the
term, it can refer to any way of determining if a
site has been visited by the user. N.b. that none of
these attacks can directly obtain the full browsing
history; the adversary must choose a set of URLs
to check before delivering the attack.

Leaking even the partial history can be dan-
gerous; for instance, it can be enough to uniquely
identify the user within the group of visitors of a
Website. Of course, an attack can also take the more
direct approach of attempting to determine if the
user regularly browses controversial Websites, or
collecting the list of service providers with which
the user does business (e.g., in order to facilitate
a subsequent social engineering attack). It must
be noted that, while most history stealing attacks
normally cannot do more direct damage to the
user than that, some go as far as identifying her
based on data obtained from a social networking
Website (See Classical CSS-Based Attacks), or
determining if she is a member of a Website where
users must sign in to access certain features (See
Cross-Site Timing-Based Attacks).

Early techniques of history stealing exploit a
vulnerability that had been included in browsers
since the adoption of Cascade Style Sheets (CSS)

until the developers of Firefox patched the gaping
security hole in the 4th version of their browser
(See Classical CSS-based Attacks). During
that period, various authors suggested different
methods of acquiring the browser history, but the
terminology has never been sufficiently uniform,
leading to several different names for the same
class of attacks.

The term “history stealing” is used in–besides
nonacademic contexts such as blog posts–(Wond-
racek et al., 2010), while many authors prefer the
use of “history sniffing” (Jakobsson & Stamm,
2006; Jang et al., 2010; Weinberg et al., 2011).
Finally, others refer to these attacks simply as “his-
tory detection” (Janc & Olejnik, 2010a; 2010b),
or “history leakage” (Wramner, 2011).

Attacks can be categorized along various
properties. Most of them are scripted (e.g.,
implemented in JavaScript), though there are
some markup language-based methods, too.
Secondly, a nonscripted method can either re-
quire user interaction to complete the attack, or
leak the browser history otherwise (e.g., through
CSS). Thirdly, attacks vary in terms of accuracy
(i.e., how certain their result is) and robustness
(i.e., how much the set of identified elements of
browsing history change over time). Fourthly,
certain attacks only query domain names, while
others work on the subdomain level. Fifthly, dif-
ferent algorithms perform differently in terms
of the number of URLs that can be checked in
a reasonable timeframe, and the CPU load they
impose. Finally, other important factors include
the repeatability and the generality of an attack.

In this section, we survey the history stealing
techniques known to date, and categorize them
based on the properties discussed previously,
and also discuss possible protection mechanisms.

Timing-Based Attacks

Timing-based history stealing methods are timing
attacks that infer browsing habits by querying the
cache of the browser and that of the Domain Name

145

Tracking and Fingerprinting in E-Business

System or Service (DNS). The algorithms are
based on the intuitive assumption that obtaining
an object from a cache is significantly faster than
getting it from a remote server.

The attack of Felten & Schneider (2000) on
the browser cache makes use of a cacheable object
(e.g., an image file from the main page of a news
portal). The scripted version (Row L, Table 3)
of the method measures the access time of the
object, and decides that its hosting site has already
been accessed if the retrieval takes longer than a
predefined threshold. In the nonscripted version
(Row K, Table 3), a dummy file is embedded into
the attacker’s page, followed by the test object, and
then another dummy file; then, the access time of
the test object can be inferred by inspecting the
timestamps of retrieving the dummy objects in
the log of the Web server. Both variants have an
accuracy above 90%, as reported by the authors,
based on their experiments. It is worth noting that
the adversary may also use the cache for tracking
purposes via “cache cookies” (Row M, Table 3).

The DNS-based (Row J, Table 3) attack is
similar to the previous one, and has the exact same
variants, but it is the time to execute a DNS
query to a domain that is measured. Felten &
Schneider argue that the attack is feasible if the
cache miss penalty is significant for a specific
domain name server; in such cases, the accuracy
is above 90%.

It is uncertain if these attacks are still viable
with modern computers. For instance, private
browsing mode makes the browser wipe the
cache when it terminates, thereby decreasing the
accuracy of the browser cache-based attack. This
is no longer a serious penalty for the users with
high-speed, flat-rate internet access. In addition,
we argue that the use of the first two attacks as
a means of tracking a user or profiling her is not
viable, as both of them are nonrepeatable (at least
in theory). Cache cookies, on the other hand, may
be efficient, provided that the cache is not wiped
very often, but they require an adversary who can
manipulate the expiry times of cached objects.

It must be noted that cache timing-based attacks
(Rows N and O, Table 3) seem to be having their
renaissance (mansour, 2011; Zalewski, 2011).
These new algorithms work around the problem of
nonrepeatability by aborting the loading of the ca-
cheable resource after a predefined duration. If the
object has finished loading during that timeframe,
it is assumed to have been cached. We have not
experimented much with these proofs-of-concept,
but a short test with Microsoft Internet Explorer
9, Mozilla Firefox 12.0, and Google Chrome 20
on a moderately powerful laptop concluded that
these algorithms might not be especially reliable,
as they produced a large number of false negatives.

Cross-Site Timing-Based Attacks

It is also possible to mount a cross-site timing attack
(Row P, Table 3) in order to infer history for a site
where users must log in to access certain content.
Such methods embed a test page and a reference
page from a domain into the attacker’s Webpage,
and compare their loading times through the
onerror and onload event handlers of JavaScript.

In the settings of Bortz et al. (2007), the refer-
ence page is chosen such that it displays similarly
for a logged-in user and a guest, while the contents
of the test page are significantly different between
these groups. With certain Websites, it may also
be possible to distinguish a logged-out member of
the site from non-members through this technique.

Protecting users from cross-site timing attacks
is not easy. A conceivable server-side counter-
measure is to make each request on a Web server
execute in a fixed time, while a client-side coun-
termeasure could be to enforce the same-origin
policy in JavaScript for the onload and onerror
event handlers.

Classical CSS-Based Attacks

Several attacks rely on CSS, but the automated
attacks in Janc & Olejnik (2010) are among the
earliest and simplest ones. They exploit the way

146

Tracking and Fingerprinting in E-Business

browsers handle the CSS pseudoclass of visited
links–the feature that makes it possible to color
(or otherwise format) an already visited hyperlink
differently from one that is absent from the history.

The nonscripted, automated, CSS-based attack
(Row A, Table 2) uses a style sheet that loads a
unique background image for a hyperlink if it is
in the history. When the victim loads the Web
page, the browser makes a request for each URL
that corresponds to a visited domain. The scripted
variant of the attack (Row B, Table 2) uses the
getComputedStyle function of JavaScript to access
the style that was actually applied on an HTML
element; then, the script can directly decide if
the corresponding domain has been visited. Both
attacks have been well-described at least since
2002 (Baron, 2002).

An attacker can also query addresses under
the domain name of a social networking site (Row

C, Table 2) with the goal of inferring the actual,
real-world identity of the user (Wondracek et al.,
2010). In order to pull this off, the adversary must
have already crawled the social network; then, a
CSS-based attack can be used to discover if the
user visited the site of a predefined set of groups
(i.e., online “clubs” with predefined topics to
which interested users can subscribe). Assuming
that a hit in this set equals an actual membership
in the group, the set of hits can be matched against
the previously crawled social network data. Ac-
cording to Wondracek et al., 42.06% of the users
of the Xing social network could be uniquely
identified by this method.

Privacy-preserving history mining (Jakobsson
et al., 2008) was proposed to amend the attack
with privacy-preserving features (Row D, Table
2), by leaking only predefined categories of vis-
ited Websites, instead of distinct domain names.

Table 2. Classification of query-based history stealing techniques

ID Attack Accuracy Speed Technology Counter-measures Harm

A Pure CSS
(Janc & Olejnik, 2010)

High High CSS Baron’s defenses; pollution;
personalization; same-
origin caching and styling

Partial history leakage

B Scripted CSS (Janc & Olejnik,
2010)

High High CSS, JS Baron’s defenses; pollution;
personalization; same-
origin caching and styling

Partial history leakage

C Social network HS
(Wondracek et al., 2010)

High High CSS, JS Baron’s defenses; pollution;
personalization; same-
origin caching and styling

Complete
identification (with
real name)

D Privacy-preserving history
mining (Jacobsson et al., 2008)

Mode-
rate

High CSS, JS opt-out; Baron’s defenses;
pollution; personalization;
same-origin caching and
styling

Coarse-grained
information leakage
about browsing habits

E Word CAPTCHA (Weinberg
et al., 2011)

High Low CSS Unknown Partial history leakage

F Character CAPTCHA
(Weinberg et al., 2011)

High Low CSS Unknown Partial history leakage

G Pawn task (Weinberg et al.,
2011)

High Low CSS Unknown Partial history leakage

H Jigsaw puzzle (Weinberg et
al., 2011)

High Low CSS Unknown Partial history leakage

I Webcam attack (Weinberg et
al., 2011)

Mode-
rate

Low Flash, image
acquisition and
processing

Unknown Partial history leakage

147

Tracking and Fingerprinting in E-Business

This algorithm is equal to a CSS-based attack,
with hyperlinks to domains belonging to the same
category behaving the same way, which makes
them indistinguishable for the attacker.

Early proposed countermeasures against auto-
mated CSS-based history stealing attacks include
URL personalization (Jakobsson & Stamm, 2006)
and history pollution (Jakobsson & Stamm, 2007).
The first proposition alters all URLs under the
domain according to a user-specific pseudonym,
thereby making guessing URLs impossible. The
second one would insert entries into the history that
point to sites that are of a similar nature to those
actually visited by the user–this way, the attacker
cannot distinguish between fake and real history
entries. Other authors proposed the extension of
the same-origin policy to caching and visited link
differentiation (Jakobsson et al., 2006).

N.b. that these defenses did not make automated
CSS-based history stealing completely infeasible.
However, in Firefox 4, the vulnerability was thor-
oughly patched in April, 2010 by making CSS
behave similarly for visited and unvisited links
(Baron, 2002), and also by removing certain CSS
features (Baron, 2010; Stamm, 2010).

Interactive CSS-Based Attacks

Modern browsers inhibit classical CSS-based
attacks; nonetheless, style sheets can still be ap-
plied to hyperlinks. If the user can be tricked into
disclosing the applied style of a set of elements,
history stealing can still be feasible, albeit at a
lower speed and for fewer URLs (Rows E through
J, Table 2). Weinberg et al. (2011) detail four
attacks, all of which are meant to be disguised
as CAPTCHAs (Completely Automated Public
Turing test to tell Computers and Humans Apart;
a puzzle that can easily be solved by a human,
but is normally difficult for computer software).
CAPTCHAs normally ask the user to, for example,
recognize and type some slightly distortedly ren-
dered letters, or to provide the right answer to a
dynamically generated, simple question, such as
“How much is 2 + 2?”

The first of the four attacks shows words to
the user, while the second one displays specially
constructed characters on seven-segment displays.
The user is asked to type all words or characters
into a text field, which completes the attack. The
first attack infers one visited URL per word,

Table 3. Classification of timing-based history stealing techniques

ID Attack Accuracy Speed Technology Counter-measures Harm

J DNS timing (Felten & Schneider,
2000)

High Moderate DNS (JS) Unknown Partial history leakage

K Naive cache timing (Felten &
Schneider, 2000)

High Moderate N/A Unknown Partial history leakage

L Scripted naive cache timing
(Felten & Schneider, 2000)

High Moderate JS Unknown Partial history leakage

M Cache cookie
(Felten & Schneider, 2000)

High Moderate JS Unknown The cache cookie
allows tracking of
the user

N Enhanced cache timing (mansour,
2011)

Low High JS Unknown Partial history leakage

O Enhanced cache timing (Zalewski,
2011)

Low High JS Unknown Partial history leakage

P Cross-site timing (Bortz et al.,
2007)

De-pends
on site

N/A JS Fixed-time requests;
same-origin onerror
and onload

Discovery of mem-
bership in an online
service

148

Tracking and Fingerprinting in E-Business

while a character represents four for the second
attack. The third attack draws a chessboard, and
maps each square to a URL. Then, a chess piece
is drawn into the square if the corresponding URL
is visited; otherwise, the square is empty. The user
is then asked to click all squares where she sees a
chess piece. Finally, the fourth interactive attack is
similar to a jigsaw puzzle: the user must click on
the pieces of which a composite picture is made
up. These attacks work, but at a very low URL
detection speed; therefore, they are less viable
for general profiling, but may be used in some
targeted attacks (e.g., in phishing attacks).

Side-Channel CSS-Based Attacks

Miscellaneous methods include the webcam at-
tack (Weinberg et al., 2011), which renders visited
links with a blinking style, and recognizes this by
processing images recorded with the user’s Web
camera (Row I, Table 2). Obtaining permission
to use the Web camera may be problematic, but
the required image processing algorithm is not
very complex (but a simple, homogeneous back-
ground may be required behind the person using
the computer).

Leaking History Through
Security Policies

HTTP Strict Transport Security (HSTS) defines
an HTTP header that forces the browser to initi-
ate a secure HTTPS connection to a Website that
was originally requested through plain HTTP. The
browser stores this setting, so that subsequent
requests are made via HTTPS. Previously we
mentioned that this functionality can be exploited
to store an identifier, but also to leak history
(Davidov, 2011).

For storage purposes, an adversary can “burn
in” a unique alphanumerical identifier into the
browser as a set of HSTS policy entries–that
is, through subdomains under the control of the
attacker–and query it later on. Upon retrieval,

the browser will initiate an HTTPS connection
for the “right” domains only. This mechanism
can be used similarly to determine visited links
where such a setting was used. One can think of
this algorithm as a mixture of a tracking cookie
and history stealing. However, it is arguably more
effective than that, since HSTS policy entries
are meant to stay in the browser for a long time.
A viable countermeasure would be to enforce a
single policy for all subdomains.

Summary of History Stealing Attacks

In the empirical study of Jang et al. (2010) over
the Alexa top 50,000 sites, it was shown that 485
sites inspected the style properties of elements that
could leak browser history. Out of these sites, 46
confirmedly performed the classical, JavaScript-
enhanced, CSS-based history stealing, and then
transferred the result to some server; 36 of them
used “off-the-shelf” history stealing code from
third-party domains. Further 326 sites inspected
a vast amount of domains, but Jang et al. could
not confirm that the history information was sent
to any server.

We have summarized the key features of all
attacks discussed hitherto in Table 2 and Table 3;
we have separated query-based and timing-based
attacks (See our taxonomy) for better clarity. The
following properties are listed for each attack:

Accuracy: High accuracy means few or zero
false positives and false negatives; it can be seen
that most attacks belong to this category. However,
both the construction and accuracy of cross-site
timing are highly dependent on the site to be at-
tacked, and therefore a general result cannot be
given for it. Moreover, privacy-preserving history
mining is moderately accurate on purpose. The
webcam attack is, however, moderately accurate
per se, according to Weinberg et al. (2011). Other
attacks by the same authors are highly reliable for
a compliant user. Finally, the result of enhanced
cache timing is based on our very limited experi-

149

Tracking and Fingerprinting in E-Business

ments; in other setups, the attacks might perform
better.

Speed. Most variants of classical, CSS-based
history stealing can query hundreds of thousands
of URLs per minute, while hundreds may be fea-
sible with cache-based attacks (except the newer,
enhanced ones). Obviously enough, attacks that
require user interaction have the lowest speed.
We have not been able to determine the speed of
cross-site timing attacks, and we find the two sites
tested by Bortz et al. too few to draw a conclusion.

Technology: Here we enumerate the technolo-
gies that are used by the attacks. We have not in-
cluded self-evident ones, such as HTTP or TCP/IP.

Countermeasures: Here we enumerate the
countermeasures that can be used to defeat (or
at least cripple) an attack. Again, we have not
included any self-evident methods (such as delet-
ing the browsing history and/or the cache of the
browser, disabling JavaScript in order to avoid
JavaScript-based attacks, or covering the Web
camera in order to defeat webcam attacks), so
“unknown” does not always imply that the user
is powerless; then again, many of these counter-
measures do not allow a fine-grained tradeoff
between browsing experience and privacy, so
the implementation of better defenses might be
desirable. By “Baron’s defenses,” we mean all
countermeasures discussed by Baron (2010),
and later implemented as a bug fix in (Baron,
2002), that is, making the style that is applied to
hyperlinks inaccessible for JavaScript programs,
modifying the way how CSS styles are applied to
hyperlinks, and disabling certain CSS features.

Harm: In this column, we list the consequences
of a successful execution of each attack, i.e., how
detrimental it is to the privacy of the user.

FINGERPRINTING ON THE WEB

Fingerprinting is an emerging, storageless identi-
fication technique on the Web replacing storage-
based techniques. When the client device is being

fingerprinted, a reproducible, unique identifier is
calculated, which can be easily recalculated with
a high probability during a subsequent visit or
when visiting another site, even if all client-side
storages are cleared. Various information can serve
as a basis of fingerprinting, such as the hardware
parameters, unique features in network communi-
cation (e.g., the IP address or timing), or software
settings and capabilities (such as OS brand, list
of installed plugins, browser agent information).
Regardless of the considered features, economi-
cally valuable fingerprinting techniques should
not be sensitive for changes in the attributes taken
into account during identification.

Although both history stealing and fingerprint-
ing techniques are storageless, we argue that it
makes sense to differentiate between them, as
the prior are based on state (browsing history,
caches, etc.), while the latter are setting- and
attribute-based. The principal difference is that
the client state can be influenced by the attacker
and Websites (this is why client state can be ex-
ploited to operate as a storage, e.g., in the case of
operational caches), but attributes and settings can
only be changed by the user. This classification is
further refined in a subsequent section.

Probably the earliest fingerprinting attempt
used for identification was mentioned in the thesis
of Mayer (2009), and the Panopticlick project
(Eckersley, 2010) was the first empirical experi-
ment on a large user base. There are even more
earlier fingerprinting attempts like the passive OS
fingerprinting of Miller (2002), or tools such as
the browser identification tool, the Browserrecon
(Ruef, 2008), which used HTTP request headers
for identification; however, these rather focused
on revealing real device and software attributes
(i.e., discovering the OS type and the user agent
string, respectively (also called OS and application
fingerprinting)), instead of measuring uniqueness
and large-scale identifiability. Although these are
not applicable for tracking, they can be used for
detecting client attributes, as an additional source
for another type of fingerprinting.

150

Tracking and Fingerprinting in E-Business

Shortly after the Panopticlick project was
published, companies started to switch from
cookie-based to fingerprinting tracking techniques
(Marshall, 2011), since fingerprinting works even
in the case of privacy-conscious users who delete
cookies regularly and use private mode, as in both
cases, these efforts are useless against fingerprint-
ing (Boda et Al., 2012). Although we must note
that some companies, such as 41st Parameter,
had used fingerprinting even before the thorough
academic analysis began (Eckersley, 2010). In ad-
dition, the EU regulation on tracking cookies–often
referred to as the “cookie law”–merely added fuel
to the fire, since it prohibited the use of all kinds
of storages for tracking unless the user consented
(Loveless, 2011), and inspired advertisers to seek
ways of circumvention.

Nowadays, several companies offer finger-
printing based behavioral tracking such as Blue-
Cava Inc., Iovation Inc., 41st Parameter, claiming
to provide device identification applicable to all
kinds of devices; however, some trackers use
fingerprinting only as a complementary solution
to regular techniques, as is the case of TradeDou-
bler, where the device fingerprint is calculated as
a hash of the user agent string and the IP address,
and then used to track ad clicks (Wramner, 2011).

In this section, we review fingerprinting tech-
niques, the related anonymity paradox (i.e., when
forged information makes the subject even more
outstanding from the crowd than as without),
and possible defenses from the literature. We
rigorously focus on technology-based solutions;
however, there is another type of fingerprinting that
may be incorporated into business practices in the
future: biometry-based fingerprinting. There is sci-
entific evidence that real-life behavior and human-
computer interaction can be used for biometrical
identification (Yampolskiy & Govindaraju, 2008),
and it has already been shown that typing patterns
are also personally identifying (Chairunnanda et
al., 2011), even mouse movement fingerprinting
(Feher et al., 2012). We believe that, in the near

future, similar techniques, with a wider-scale use
will emerge on the market of tracking.

Information-Based
Fingerprinting Techniques

Information-based fingerprinting techniques
query and collect high-level client attributes (read
values of variables, constants, or measure certain
characteristics) and settings for fingerprinting
(e.g., from the OS or the browser). Here we review
the most relevant information-based fingerprint-
ing techniques, and the related countermeasures.

One of the earliest fingerprinting techniques,
Browserrecon, targeted the family and version of
the browser agent. Browserrecon regarded the user
agent string to be fake, and instead it inspected the
sent HTTP headers, as the header lines and their
values differ for each browser family, sometimes
even between versions, too. Norbert (2011) con-
firms this for Firefox, and in addition mentions
a method of distinguishing Firefox from other
browsers, as it is the only browser that makes a
second request for the favicon if it is not found
for the first time.

Occasionally, particular (or even identifying)
information is sent through the headers. For ex-
ample, an installation of Microsoft Office causes
changes to the Internet Explorer HTTP accept
headers (Wramner, 2011); or as another example,
some mobile ISPs intentionally leak private infor-
mation (such as mobile phone numbers, roaming
status) of their subscribers through the request
headers (Mulliner, 2010). However, headers need
to be augmented with additional information for
effective, wide-scale fingerprinting, in order for
them to be suitable for tracking. In their work,
Yen et al. (2012) analyzed millions of hosts who
visited the Hotmail and the Bing search services,
and concluded that 80% of users can be tracked
by simply using the user agent strings augmented
with IP prefix information as an identifier.

The thesis of Mayer (2009) was the first step
towards classic information-based fingerprinting.

151

Tracking and Fingerprinting in E-Business

In his experiment, a test site was run, where the
navigator object, screen resolution, list of plugins,
and acceptable MIME types were hashed together
for creating the browser fingerprint. Although
only 1,328 clients were measured, this experi-
ment showed the potential in fingerprinting, as
unique fingerprints were obtained in 96.23% of
all cases. It also turned out that, when plugin and
MIME type lists are provided from Mozilla- and
WebKit-based browsers, they provide additional
entropy for fingerprinting. Eckersley showed that
this is true for Flash- and Java-based font detection
(Eckersley, 2010).

Making use of the underlying principles, the
Panopticlick project was designed to test the
uniqueness of browser fingerprints on a larger
scale (i.e., to determine the commercial viability
of such fingerprinting methods (Eckersley, 2010)).
During the experiment, the uniqueness of differ-
ent attributes such as the user agent string, screen
resolution, font and plugin lists were measured,
and self-information of combined attributes were
also measured–but not the joint entropy of cor-
relating attributes, as Perry et al. notice (2011).
Until the beginning of the analysis, the project
had gathered 286,777 fingerprints, from which
94.2% were unique if plugins were enabled (and
only a further 4.8% had anonymity sets at least
of two users), and Eckersley provided a simple
but precise algorithm that can follow changes in
fingerprints (i.e., due to browser or plugin updates)
with an accuracy of 99.1%.

The Panopticlick project inspired the idea of
cross-browser fingerprinting (Boda et Al., 2012),
where two major improvements were made.
Panopticlick used attributes that were browser-
dependent (e.g., the user agent string), and it
was also plugin-dependent, since precise results
were provided only by using either Flash or Java
to collect font lists (which is a rather important
source of entropy). Although Eckersley (2010)
mentioned CSS-based font enumeration, the work
of Boda et al. (2012) is the first known attempt to

implement JavaScript and CSS-based font detec-
tion for fingerprinting.

Moreover, the list of queried fonts was chosen as
the basis of identification, based on the following
assumption: as the list of installed software on a
computer is unique, and so is the list of available
fonts, since new applications can silently install
fonts, too. Therefore, fingerprints were hashed
from the first two octets of the IP address, the
screen resolution, the time zone, and some se-
lected fonts–where all attributes were browser-
independent (See Figure 4). The font feature
set was created in a way to eliminate values of
uncertain and browser-dependent fonts, as some
fonts behave differently in different browsers.

In a 6-month period of collection, a total of
989 fingerprints were obtained, on which it was
shown that JavaScript-based font detection was
sufficient for unique identification (at least for
Windows and MacOS systems); however, due to
the low number of fingerprints created in multiple
browsers in parallel, the cross-browser property
has remained a mere concept. This inspired the
Cross-browser fingerprinting test 2.0 (2012), as
an attempt to prove the viability of such tracking.
The basic concepts remained the same, but there
were some changes: the font feature list was refined
(based on lessons learned from the first test), the
first two IP octets were omitted, and an ever-
cookie was optionally set to support future
analysis (for which some additional info is also
collected but not included in the fingerprint, such
as the list of plugins).

There are several other fingerprinting ex-
periments similar to Panopticlick and the cross-
browser fingerprinting test, but we chose to omit
them, as we deemed that they did not deliver
groundbreaking novelties; however, there are
fundamentally different ones that are worth
mentioning. Whitelist fingerprinting (Mowery
et al., 2011) is an attack against Firefox with the
NoScript extension installed. NoScript allows
users to completely block JavaScript, unless the
site in question is included on a whitelist. The

152

Tracking and Fingerprinting in E-Business

rationale behind the algorithm is that the user is
likely to whitelist sites of her interest that would not
work with blocked JavaScript. The attack embeds
a JavaScript program into a Web page and checks
for hallmarks of a successful execution. For a large
set of domains, the pattern of “whitelist hits” may
be enough to fingerprint a user, but the efficiency
of this fingerprinting scheme on a large user base
is not known. Another problem of the attack is its
small-scale usability.

Reschl et al. (2011) discuss a fingerprinting
method that aims to discover the version of the
browser through examining the behavior of the
JavaScript implementation. Globally-available
JavaScript test suites are used to discover the exact
browser version. In a survey with 189 participants,
the test suite ran in 90ms on an average PC, and
200ms on a smartphone, and identified supported

browser versions with an accuracy of 100%–this
claim was verified by inspecting the UAS of the
browser and by asking the user about the exact
version of the browser. Arguably, this information
alone is little for unique identification, but may be
used as an additional source in tracking methods.
Norbert (2011) proposes to use somewhat rarely-
used JavaScript calls like arguments.callee().
toString() to discover subtle differences between
the JavaScript implementations of browsers.

Mowery et al. (2011) constructed another
browser and OS fingerprinting algorithm, but
based it on off-the-shelf JavaScript test scripts
(i.e., benchmarks). The accuracy of guessing
the browser family was 98.2%, and guessing the
correct browser version was successful in 79.8%
of all cases. The operating system fingerprinting
was performed within a chosen browser version,

Figure 4. Single vs. cross-browser fingerprint: values need to be filtered to obtain system- and not-
browser-specific information as an input for the fingerprint

153

Tracking and Fingerprinting in E-Business

namely Firefox 3.6. Versions of Windows (7,
Vista, and XP) could be distinguished with an
accuracy of 98.5% (due to the lack of volunteers
other systems were not measured).

Hardware and Network Level
Fingerprinting Techniques

Besides browser and OS fingerprinting, Mowery
et al. (2011) also discussed a CPU architecture
fingerprinting algorithm that had a success rate
of 45.3%. This is not very precise, and has an as
long runtime as their OS and browser fingerprint-
ing technique. That said, hardware fingerprinting
is also possible by looking for minor differences
between images rendered by different hardware
(Mowery & Shacham, 2012) onto the <canvas>
element of the HTML5 standard. Furthermore,
versions of Safari return some quite detailed
information about the Graphics Processing Unit
(GPU) and the version of the rendering engine,
which can further enhance a comprehensive
fingerprint. Mowery & Shacham describe four
different canvas-based algorithms. According to
their empirical analysis on a sample of 300 volun-
teers, their test algorithms produced 116 groups,
resulting in a distribution entropy of 5.73 bits.

In our opinion, this is quite formidable (albeit
insufficient for creating unique identifiers per se),
especially when combined with other fingerprints
such as Panopticlick or the cross-browser test, and
even more so if we consider that it runs in the frac-
tion of a second, completely invisibly to the user,
and how hard it is to implement countermeasures
without imposing significant restrictions (e.g.,
completely disabling WebGL, adding noise to the
rendered image, or rendering in software through
a standardized graphics library) on the capabilities
of the browser. Mowery & Shacham envision a
pop-up window to ask for permission to retrieve
pixel data as an effective defense, which may be
viable, but it is uncertain how users would react
to yet another permission dialog box.

Kohno et al. (2005) experimented with fin-
gerprinting computers based on the clock skews
they exhibit. Skew of two clocks is defined as
the difference between the rates with which they
advance. Two attacker models are discussed: one
where the clock skew is calculated for TCP time-
stamps, and one where the attacker bombards the
fingerprinted computer with ICMP Timestamp
Requests, and estimates the skew of the system
clock based on the values in the incoming ICMP
Timestamp Replies. According to Kohno et al.,
the TCP timestamp-based fingerprint remains
stable even if the attacked computer frequently
synchronizes its system clock with a Network
Time Protocol (NTP) time server. Furthermore,
both methods yield similar results if the system
clock is not synchronized with such a time server,
as was found to be the default with many operating
systems from 2005.

Kohno et al. conducted their experiments on
traffic metadata obtained from an American Tier 1
ISP, and data obtained from tests with a computer
laboratory with identically provisioned computers.
Based on the first data set, the entropy of TCP
timestamp-based clock skew fingerprinting was
shown to range from 4.87 bits to 6.41 bits. The
analysis of the second data set showed that such
clock skews became stable shortly after bootup.
Moreover, by testing their fingerprinting algo-
rithm on the same laptop at different geographical
locations and network access media, it was also
proven that the clock skew estimate is oblivious
to these factors.

Huang et al. (2012) discuss another clock skew-
based device fingerprinting method with the aim
of being an additional security layer for the login
process of a cloud-based service (i.e., to recognize
if a “usual” client is attempting to sign in to an
account). The skew of the clock of a connecting
client with respect to a server-side reference clock
is measured by triggering an AJAX (Asynchronous
JavaScript And XML) request every 5 seconds, and
then the clock skew is estimated through statistical
methods. According to their measurements, the

154

Tracking and Fingerprinting in E-Business

so-estimated clock skew is largely independent
from the network medium, and the only notable
exception is the use of a virtual machine, which
produces a different–but stable–clock skew upon
every reboot. Furthermore, Huang et al. conducted
an experiment with 100 devices, and found that
the false negative and false positive rates are at
most 8%.

However, we would like to highlight that the
applicability of the algorithm for its original
purpose of enhancing authentication is somewhat
questionable, as at least 200 AJAX requests are
required to get a meaningfully precise clock skew
estimate, which takes 16.7 minutes. We argue,
however, that the algorithm can successfully and
clandestinely fingerprint a user if the attacker’s
Web page is kept open for a long time (e.g., when
reading a news site or taking a coffee break, but
not when logging in to a webmail service).

Yen et al. (2009) try to identify browser fami-
lies based on other types of summarized traffic
metadata of information flows. They examine
9 features of TCP connections (e.g., their byte
count and duration). Firstly, the authors tested
their classification method based on a data set
comprising traffic from Windows-based hosts. The
algorithm was tested by data originating from a
single browser instance, and trained by the rest of
the data set. It was found that the correct browser
family could be identified with a precision of at
least 71%, but even 100% was achievable after
slight adjustments to the parameters. Then, the
algorithm was also tested in a real-world-like
scenario, where the precision of classifying Firefox
and Opera browsers was calculated for several
parameters, and it peaked at 74.56%.

In our opinion, this algorithm can probably be
extended to several browser families (and possibly
versions), as implied by the authors. However,
requiring the summary of a vast amount of data
imposes a lower bound on the capabilities of the
attacker. As far as the possible countermeasures
are concerned, it might be possible to make the
browser “randomize” its traffic characteristics

(e.g., varying the number of resources that are
fetched in one go), but that could possibly introduce
inconsistencies into the user experience.

The Anonymity Paradox: Use
Camouflage with Wisdom

Before discussing defenses against fingerprinting,
we should mention the anonymity paradox (i.e.,
when one’s efforts result in even stronger identifi-
ability instead of preserving her privacy). Let us
imagine that, as a means of protection, someone
changes the user agent string of the browser to an
empty string. This clearly preserves some privacy
as it prevents information loss, but it is also likely
that it uniquely identifies her (and makes her
traceable), since such user agent strings are not
very common. This is like putting on a ski mask
in a bank; if you are the only one doing this, you
are anonymous, but also in focus (and very likely
to be caught). See Figure 5 for a fingerprinting-
related example.

Eckersley (2010) brings up Privoxy users as
examples, whose user agent strings had 15.5 bits
of identifying information alone. Similarly, brows-
ing the Web with Tor can also be a marker for
fingerprinting, according to the measurements of
Hubner et al. (2010), who found that only 22% of
Tor users used TorButton to browse the Web.
Perry et al. (2011) go even further and state that
every single altered option can be used for fin-
gerprinting; for example, user customized filters
can be suitable targets, just as in the case of
whitelist fingerprinting.

In connection to fingerprinting, such and
similar phenomena–that is, when client state is
altered in order to protect privacy, but due to the
low user base doing the same it achieves identifica-
tion rather than anonymity–are referred to in the
literature as the Panopticlick or the fingerprinting
paradox (The Simple Computer, 2012; Broenik,
2012) and also discussed in Eckersley (2010) and
Perry et al. (2011). However, this concept can be
generalized beyond fingerprinting, and can occur

155

Tracking and Fingerprinting in E-Business

in other scenarios while using privacy enhancing
technologies (PETs), thus we call it the anonym-
ity paradox.

Therefore, substitution values must be chosen
carefully, or should be used by a sufficient num-
ber of people. Attributes should blend the device
into the mass of others to achieve anonymity, and
multiple attributes regarded together should be
chosen carefully. As an example of the latter, an
iOS Safari user agent string coupled with a reso-
lution of 1280x1024 do not sound very realistic,
and provides a good source of information for
identification, too. In addition, one should consider
the possibility of session linkability, and should
not change values randomly too often (e.g., at
every page load).

Defending Against
Fingerprinting Attacks

One needs to consider many aspects in order to
achieve unobservability of her actions against
fingerprinting attacks; first of all, as a starting
point it is presumed that no regular attacks will
work against her (including IP-based tracking).
Therefore, for the sake of simplicity (from the
user’s viewpoint), we propose the use of off-the-

shelf solutions created by professionals, such as
Tor Browser Bundle (Tor, 2012), or JonDoFox
with JonDo Proxy (JonDo, 2012), as both provide
network-level anonymization, and also protection
against most regular tracking techniques and
privacy-violating attacks. In addition, develop-
ers of both seek solutions to avoid fingerprinting
attacks, too.

Particularly suspicious users may use static
virtual machine snapshots (burnt to a DVD or
reverted regularly) to protect their system against
tracking (The Simple Computer, 2012), which
also provides some protection against clock skew
attacks as described previously, but, of course, this
requires a sacrifice of some comfort. However, we
note that in case of bad configuration, such systems
provide a static fingerprint for tracking their user.

Customizing the Browser

For some reason, there are users who do not want
to use complex solutions as previously discussed,
but to build their own compilations instead (e.g.,
to add PETs as extensions to the Web browsing
applications they use every day). There are many
browser and system parameters to cover (e.g., time
zone, user agent string, language and character

Figure 5. The anonymity paradox illustrated: camouflaging is not enough, as anonymity set size also
matters. There are three visitors who were using a counter fingerprinting technology, masking them-
selves as Firefox 15 users. However, one of the visitors used unusual camouflage settings which made
her identifiable and trackable, but the others had an anonymity set size of 2.

156

Tracking and Fingerprinting in E-Business

set settings, accepted content types, headers), and
there are some which cannot be masked without
serious investigation and cumbersome hacking.
For instance, information related to screen and
content window resolutions need to be reduced,
as alone this option is estimated to leak 29 bits of
identifying information (Perry, 2011b), but a list
of “talkative” attributes may be further convincing
(e.g., JonDo Test, 2012).

In conclusion, in our opinion, building a custom
software package seems futile, as a complete solu-
tion requires building an anonymous Web browser
(Gulyás et al., 2008) with several extensions and
modifications. We agree with Perry et al. (2011),
who stated that “each option that detectably alters
browser behavior can be used as a fingerprinting
tool,” and we just highlight whitelist fingerprint-
ing again (Mowery et al., 2011) as an example.

Protection against JavaScript
Engine Fingerprinting

Unfortunately, none of the discussed JavaScript-
based fingerprinting algorithms are trivial to pro-
tect against (Norbert, 2011; Reschl et al., 2011).
However, some attacks seem less threatening–even
if we take the lack of effective countermeasures
into consideration–as they are not feasible to be
used in real-life situations. As a drawback of the
fingerprinting suite of Mowery et al. (2011), its
runtime of several minutes seems to be prohibi-
tive, bar for Web pages that are normally left open
for a long time (e.g., news sites). Mowery et al.
argue that it might be possible to reduce the delay
between the individual test scripts, which would
result in a more universally usable algorithm.

We argue that functional aspects–such as
which JavaScript test cases fail or execute in a
certain timeframe–will always reveal the subtle
differences between browser families and even-
tually–as bugs get fixed and JavaScript engines
evolve–versions within a family, too. This is
inevitable, unless all browsers include the exact
same JavaScript interpreter; however, this would

probably seriously impede competition between
browser vendors and innovation.

One way of avoiding fingerprinting based on
the characteristics of the JavaScript engine would
be to allow the user to choose the implementa-
tion at will (e.g., with a browser extension). Of
course, this is hardly viable between different
browser families, and outright impossible for
engines of closed-source browsers. Furthermore,
this approach would possibly expose the user to
security vulnerabilities of certain old JavaScript
interpreters, or break the functionality of some
Web pages that are optimized for a certain ver-
sion of an engine.

Recent Developments on
Protecting the Font List

The entropy of the font list was found to be 13.9
bits in the Panopticlick experiment, having the
second highest value of all inspected attributes
(Eckersley, 2010). Due to this finding, and the fact
that fonts can be detected in multiple ways (via
Flash, Java or JavaScript), fonts are likely to play
an important role in fingerprint-based tracking.
In addition, fonts also significantly influence the
user experience of Web browsing, and therefore it
is not possible to restrict the browser to a handful
of fonts (or at least such a modification will not
be accepted by the majority of users).

Firefox offers a simple option to restrict all
possible fonts to a selection of four (i.e., Content
> Fonts & Colors > Advanced > Allow pages
to choose their own fonts), which also helps in
impeding font-based fingerprinting, but it is not
a very user experience-friendly solution. There-
fore, it seems most likely that Firefox will apply a
patch to this solution (Viecco, 2012), which was
developed for the Tor browser (Perry, 2011a).

The latter includes two novel options, namely
the browser.display.max_font_count and browser.
display.max_font_attempts to limit the number of
fonts, and font load attempts, regulated on a per
page load basis (currently, test values are set as 5,

157

Tracking and Fingerprinting in E-Business

10 respectively). This method limits JavaScript-
based detection only; therefore, affected plugins
need to be disabled.

For the problem of session linkability, we
suggest further modifications, as an attacker can
test different fonts during sequential page loads.
It is not likely that font lists collected this way
would have a high entropy (at least for tracking
only by font lists), but they can be regarded as a
significant additional entropy source. Therefore,
we propose to use these options in a per-domain
setting, with a user interface for necessary in-
teraction (e.g., clearing the cache of previously
loaded fonts), which would not allow loading
new fonts if the user navigates to a new page on
the same domain.

The FireGloves add-on is a proof-of-concept
utility (i.e., not a standalone extension providing
enhanced privacy) aiming to show a compromise
between good user experience and fingerprintabil-
ity, thus it chooses a different approach to disable
font-based fingerprintability–namely rewriting
the offsetWidth and offsetHeight getters in order
to prohibit JavaScript font detection (FireGloves,
2012). Although it has problems on some pages, it
offers a usable alternative; however, the solution of
the Tor Browser with a per-domain setting would
admittedly embody a better solution.

Defending Low-Level
Fingerprinting Attacks

Protecting users against the threats of these
fingerprinting attacks is hard. Hardware-based
techniques such as font rendering-based finger-
printing can hardly be defeated from a browser,
as the fingerprintable information is provided by
low-level software, such as the driver of a GPU,
or a layer of the operating system. Clock skew is
another example of a system feature that is out
of the reach of the browser. Of course, certain
features of the browser (such as the number of
objects that are fetched in a single TCP session,
or the content of HTTP request headers) can be

manipulated, but it might impose some–possibly
hard-to-predict–changes on user experience.

Taxonomy for Storageless
Tracking Techniques

To the best of our knowledge, this is the first
taxonomy provided for storageless tracking tech-
niques. More precisely, we classify techniques
using a single type of source at once; however,
techniques using multiple sources may emerge
in the future (e.g., hardware-level fingerprinting
with browser functionality). Basically, there
are three types of sources to take into account:
state information (e.g., caches), attributes (e.g.,
screen resolution, font list, functionality test-
ing) and settings (e.g., cookies enabled or not,
whitelists).

In our taxonomy (depicted on Figure 6), first
we differentiate history stealing from fingerprint-
ing techniques by the fact that they are strictly
state-based: history stealing attacks aim to extract
state information from the client (i.e., from the
user’s device or software (browser, OS, etc.)). As
the state of the client changes during browsing
the Web, it can also be altered by the attacker in
order to exploit it as a storage (e.g., HSTS cache).
This is the same reason why it is not used for
fingerprinting, as it can change frequently. At-
tacks discussed under history stealing can also
be additionally categorized either query-based
or timing-based attacks.

We furthermore divide fingerprinting into
low-level and information-based fingerprinting
subclasses. Exactly as discussed in this chap-
ter, low-level fingerprinting sources incorpo-
rate hardware- and network-level fingerprint-
ing techniques, and the rest of the tracking
techniques constitute the group of information-
based fingerprinting methods. In addition, we
distinguish single-browser and cross-browser
fingerprinting techniques and classify dis-
cussed procedures as on Figure 6. As an alter-
native, it is possible to distinguish information-

158

Tracking and Fingerprinting in E-Business

Figure 6. Taxonomy of the storageless tracking techniques

159

Tracking and Fingerprinting in E-Business

based fingerprinting techniques as passive or
active, based on whether they query client-side
information (via JavaScript), or solely use
information automatically revealed by the
browser (Broenik, 2011; Mayer & Mitchell,
2012). In our opinion, browser-dependency is
rather important that this attribute, and there-
fore we defined our taxonomy accordingly.

CONCLUSION: IS THERE ROOM
FOR COOKIELESS TRACKING?

As we highlighted in the chapter discussing the
current state of the advertising and tracking
business, it is entirely clear that the industry
will not abandon tracking in response to user
countermeasures, but rather switch between
technologies to bypass self-helping attempts
of privacy-conscious users and also to avoid
related regulations. Users are not as aware of
fingerprinting technologies as cookie- and other
storage-based techniques, and, consequently,
this favors fingerprint tracking. There are even
tracker companies who advertise their service as
a solution for companies affected by the “cookie
law” in the EU (BlueCava, 2012). Therefore, we
expect that trackers will favor fingerprint-based
tracking against other techniques.

However, going forward, regulation will hit
fingerprint-related tracking, too (at least in the
EU), but the industry will no doubt find a way
to circumvent these regulations. For instance, it
is not possible to forbid sites to query browser
attributes entirely, since some are necessary
for everyday operation. Even if these attributes
are left out from the fingerprint measurements
either because of regulation or technical barri-
ers, passive fingerprinting can still be used for
tracking. Therefore, we conclude that–regard-
ing the current scenario–it is most likely that
fingerprinting will spread among trackers, and
in places having behavioral advertising and

tracking regulations in effect, a longer battle
will take place.

In the last few years, a kind of a cat-and-
mouse game has taken place in the area of
tracking techniques, especially remarkably
for storage-based ones. When a novel tracking
technique was discovered, in some time (after
a sufficient rise in user awareness) a related
protective solution arrived, which was shortly
followed by a new identification method. This
cycle seems to repeat endlessly, over and over.
Fortunately, history stealing seems to have been
defeated; due to strong industrial intervention,
it is very unlikely for new, widely adoptable
and effective techniques to emerge. Neverthe-
less, for fingerprinting techniques, the match
has just begun.

This process indicates where research is
needed for enhancing user privacy. As the tar-
get of tracking shifted from the browser to the
device, we expect a similar shift to biometric
fingerprinting (i.e., tracking the person herself
across multiple browsers, OSes, and devices).
Although fingerprinting countermeasures are
far from being perfect (or widespread), and
complex protective methods are yet examined
by the community (e.g., protecting both against
font-based cross-browser fingerprinting and
clock-skew measurement), we believe it is time
for researchers to start thinking about how to
cover biometric information sources.

REFERENCES

Aggarwal, G., Bursztein, E., Jackson, C., & Boneh,
D. (2010). An analysis of private browsing modes
in modern browsers. In Proceedings of the 19th
USENIX Conference on Security (6-6). Berkeley,
CA: USENIX Association.

160

Tracking and Fingerprinting in E-Business

Ayenson, M., Wambach, D. J., Soltani, A., Good,
N., & Hoofnagle, C. J. (2011). Flash Cookies
and Privacy II: Now with HTML5 and ETag
Respawning. Social Science Research Network.
Retrieved November 13, 2012, from http://ssrn.
com/abstract=1898390

Baron, D. (2002). Bug 147777 –:Visited sup-
port allows queries into global history. Bug-
zilla@Mozilla. Retrieved November 13, 2012,
from https://bugzilla.mozilla.org/show_bug.
cgi?id=147777

Baron, D. (2010). Preventing attacks on a user’s
history through CSS:Visited selectors. David
Baron’s homepage. Retrieved November 13, 2012,
from http://dbaron.org/mozilla/visited-privacy

Benninger, C. (2006). AJAX Storage: A Look
at Flash Cookies and Internet Explorer Persis-
tence. Technical report. Retrieved November 13,
2012, from http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.128.2523

BlueCava. (2012). BlueCava releases “cookie-
less” device identification technology for online
advertisers. Press release. Retrieved November
13, 2012, from http://www.bluecava.com/news-
release/bluecava-releases-cookie-less-device-
identification-technology-for-online-advertisers/

Boda, K., Földes, Á. M., & Gulyás, G. Gy., &
Imre S. (2012). User Tracking on the Web via
Cross-Browser Fingerprinting. In P. Laud (Ed.),
Information Security Technology for Applications:
16th Nordic Conference on Secure IT Systems,
NordSec 2011, Tallinn, Estonia, October 26-
28, 2011, Revised Selected Papers (pp. 31-46).
Heidelberg, Germany: Springer-Verlag Berlin.
Retrieved fromhttp://dx.doi.org/10.1007/978-3-
642-29615-4_4

Bortz, A., Boneh, D., & Nandy, P. (2007). Expos-
ing Private Information by Timing Web Applica-
tions. In Proceedings of the 16th International
Conference on World Wide Web (pp. 621–628).
New York: ACM Press. Retrieved from http://doi.
acm.org/10.1145/1242572.1242656

Broenink, R. (2012). Using Browser Properties
for Fingerprinting Purposes. Presented at the 16th
Twente Student Conference on IT. Enschede, The
Netherlands.

Buckinx, W., & Van den Poel, D. (2005). Predict-
ing Online Purchasing Behavior. European Jour-
nal of Operational Research, 166(2), 557–575.
doi:10.1016/j.ejor.2004.04.022.

Bursztein, E. (2011, July 22). Tracking users that
block cookies with a HTTP redirect. Elie Bursz-
tein’s homepage. Retrieved November 13, 2012,
from http://elie.im/blog/security/tracking-users-
that-block-cookies-with-a-http-redirect/

Chairunnanda, P., Pham, N., & Hengartner, U.
(2011). Privacy: Gone with the Typing! Identifying
Web Users by Their Typing Patterns. Presented at
4th Hot Topics in Privacy Enhancing Technolo-
gies, in conjunction with the 11th Privacy Enhanc-
ing Technologies Symposium. Waterloo, Canada.

Chandna, P. (2011). Adobe Releases Flash Player
10.3, Solves the ‘Flash Problem’. Maximum
PC. Retrieved November 13, 2012, from http://
www.maximumpc.com/article/news/adobe_re-
leases_flash_player_103_solves_flash_problem

Cranor, L. F. (2003). ‘I Didn’t Buy it for Myself ’
Privacy and Ecommerce Personalization. Institute
for Software Research. Retrieved November 13,
2012, from http://repository.cmu.edu/isr/37

Cross-browser fingerprinting test 2.0 (2012).
Cross-browser fingerprinting test 2.0. Retrieved
November 13, 2012, from http://fingerprint.pet-
portal.eu/?lang=en

Danis, M. (2011). Analysis of user tracking
techniques in web feeds. Bachelor of Science
Thesis. Retrieved November 13, 2012, from http://
pet-portal.eu/files/articles/2011/rss_tracking/
rss_tracking.pdf (in Hungarian)

161

Tracking and Fingerprinting in E-Business

Davidov, M. (2011). The Double-Edged Sword
of HSTS Persistence and Privacy. Leviathan
Security Group. Retrieved November 13, 2012,
from http://www.leviathansecurity.com/blog/
archives/12-The-Double-Edged-Sword-of-HSTS-
Persistence-and-Privacy.html

Davis, J. (2000). American consumers will force
e-tailers to just say no to dynamic pricing. Info-
World, 22(41), 116.

Eckersley, P. (2010). How unique is your web
browser? In M. J. Atallah, & N. J. Hopper (Eds.),
Privacy Enhancing Technologies: 10th Interna-
tional Symposium, PETS 2010, Berlin, Germany,
July 21-23, 2010. Proceedings (pp. 1-18). Heidel-
berg: Springer-Verlag Berlin. doi:10.1007/978-3-
642-14527-8_1

Efrati, A. (2011, May). ‘Like’ Button Follows
Web Users. The Wall Street Journal. Retrieved
November 13, 2012, from http://online.wsj.com/
article/SB100014240527487042815045763294
41432995616.html

Feher, C., Elovici, Y., Moskovitch, R., Rokach,
L., & Schclar, A. (2012). User Identity Verifica-
tion via Mouse Dynamics. Journal Information
Sciences: An International Journal, 201, 19–36.
doi:10.1016/j.ins.2012.02.066.

Felten, E. W., & Schneider, M. A. (2000). Tim-
ing Attacks on Web Privacy. In Proceedings of
the 7th ACM conference on Computer and Com-
munications Security (pp. 25–32). New York:
ACM Press. Retrieved from http://doi.acm.
org/10.1145/352600.352606

FireGloves. (2012). FireGloves 1.2.3. Add-ons
for Firefox. Retrieved November 13, 2012, from
https://addons.mozilla.org/hu/firefox/addon/
firegloves/

Fitzpatrick, A. (2012). ‘Politwoops’ Collects
Politicians’ Deleted Tweets. Mashable. Retrieved
November 13, 2012, from http://mashable.
com/2012/05/30/politwoops/

Goldfarb, A., & Tucker, C. E. (2011, January).
Privacy Regulation and Online Advertising.
Management Science, 57(1), 57–71. doi:10.1287/
mnsc.1100.1246.

Goldfarb, A., & Tucker, C. E. (2011). Online
advertising, behavioral targeting, and privacy.
Communications of the ACM, 54(5), 25–27.
doi:10.1145/1941487.1941498.

Golle, P., & Partridge, K. (2009). On the Ano-
nymity of Home/Work Location Pairs. In H.
Tokuda, M. Beigl, A. Friday, A. J. Brush, & Y.
Tobe (Eds.), Pervasive Computing: 7th Interna-
tional Conference, Pervasive 2009, Nara, Japan,
May 11-14, 2009. Proceedings (pp. 390-397).
Berlin, Germany: Springer-Verlag. http://dx.doi.
org/10.1007/978-3-642-01516-8_26.

Gomez, J., Pinnick, T., Soltani, A., Carver, B.,
Makker, S., & Mccans, M. (2009). Know Privacy.
Technical report. Retrieved November 13, 2012,
from http://knowprivacy.org/report/KnowPri-
vacy_Final_Report.pdf

Grossmann, J. (2007, April 20). Tracking users
with Basic Auth [Web log comment]. Weblog.
Retrieved from http://jeremiahgrossman.blogspot.
hu/2007/04/tracking-users-without-cookies.html
(2012, November 13 G.

Gulyás (2009). Facebook – The Big Brother is
watching you [Web log comment]. Retrieved
from http://pet-portal.eu/blog/read/174/ (2012,
November 13)

Gulyás, G. Gy., Schulcz, R., & Imre, S. (2008).
Comprehensive analysis of web privacy and
anonymous web browsers: Are next generation
services based on collaborative filtering? In L.
Capra, I. Wakeman, N. Foukia, & S. Marsh (Eds.),
Proceedigns of the Joint SPACE and TIME Work-
shops 2008 (Part of IFIPTM 2008 - Joint iTrust and
PST Conferences on Privacy, Trust Management
and Security) (pp. 17-32). Trondheim, Norway.

162

Tracking and Fingerprinting in E-Business

Gulyás, G. G., Schulcz, R., & Imre, S. (2012).
Separating Private and Business Identities. In
R. Sharman, S. Das Smith – M. Gupta (Eds.),
Digital Identity and Access Management: Tech-
nologies and Frameworks (pp. 114-132). Her-
shey, PA: Information Science Reference. doi:
doi:10.4018/978-1-61350-498-7.ch007.

Huang, D., Yang, K., Ni, C., Teng, W., Hsiang,
T., & Lee, Y. (2012). Clock Skew Based Client
Device Identification in Cloud Environments. In
Proceedings of 2012 IEEE 26th International
Conference on Advanced Information Networking
and Applications (pp. 526–533). Fukuoka, Japan:
IEEE. Retrieved from http://doi.ieeecomputerso-
ciety.org/10.1109/AINA.2012.51

Huber, M., Mulazzani, M., & Weippl, E. (2010).
Tor http usage and information leakage. In B.
De Decker, & I. Schaumüller-Bichl (Eds.), Com-
munications and Multimedia Security: 11th IFIP
TC 6/TC 11 International Conference, CMS 2010,
Linz, Austria, May 31 – June 2, 2010. Proceedings
(pp. 245-255). Berlin, Germany: Springer-Verlag.
http://dx.doi.org/10.1007/978-3-642-13241-4_22

Interactive Advertising Bureau (IAB). (2012, June
11). Internet Advertising Revenues Set First Quar-
ter Record at $8.4 Billion. Interactive Advertising
Bureau Press Release. Retrieved November 13,
2012, from http://www.iab.net/about_the_iab/
recent_press_releases/press_release_archive/
press_release/pr-061112

IpToCountry. (2012). FREE IP to Country Data-
base. WEBNet77. Retrieved November 13, 2012,
from http://software77.net/geo-ip/

Jackson, C., Bortz, A., Boneh, D., & Mitchell, J.
C. (2006). Protecting Browser State from Web
Privacy Attacks. In Proceedings of the 15th In-
ternational Conference on World Wide Web (pp.
737–744). New York: ACM Press. Retrieved from
http://doi.acm.org/10.1145/1135777.1135884

Jakobsson, M., Juels, A., & Ratkiewicz, J. (2008).
Privacy-Preserving History Mining for Web
Browsers. In Proceedings of the Web 2.0 Secu-
rity and Privacy 2008. Washington, DC: IEEE
Computer Society.

Jakobsson, M., & Stamm, S. (2006). Invasive
Browser Sniffing and Countermeasures. In Pro-
ceedings of the 15th International Conference
on World Wide Web (pp. 523–532). New York:
ACM Press. Retrieved from http://doi.acm.
org/10.1145/1135777.1135854.

Jakobsson, M., & Stamm, S. (2007). Web Cam-
ouflage: Protecting Your Clients from Browser-
Sniffing Attacks. Security and Privacy, IEEE,
5(6), 16–24. doi:10.1109/MSP.2007.182.

Janc, A., & Olejnik, L. (2010). Feasibility and
Real-World Implications of Web Browser His-
tory Detection. In Proceedings of the Web 2.0
Security and Privacy 2010. Washington, DC:
IEEE Computer Society.

Janc, A., & Olejnik, L. (2010). Web Browser His-
tory Detection as a Real-World Privacy Threat.
In D. Gritzalis, B. Preneel, & M. Theoharidou
(Eds.), Computer Security – ESORICS 2010: 15th
European Symposium on Research in Computer
Security, Athens, Greece, September 20-22, 2010.
Proceedings (pp. 215–231). Berlin, Germany:
Springer-Verlag.

Jang, D., Jhala, R., Lerner, S., & Shacham, H.
(2010). An Empirical Study of Privacy-Violating
Information Flows in JavaScript Web Applica-
tions. In Proceedings of the 17th ACM conference
on Computer and communications security (pp.
270–283). New York: ACM Press. Retrieved from
http://doi.acm.org/10.1145/1866307.1866339

JonDo. (2012). JonDoFox – Anonymous and
secure web surfing. JondoNym – The anonimi-
sation service. Retrieved November 13, 2012,
from https://anonymous-proxy-servers.net/en/
jondofox.html

163

Tracking and Fingerprinting in E-Business

JonDo Test. (2012). IP Check: Next generation
of website tracking analysis. JondoNym – The
anonimisation service. Retrieved November 13,
2012, from http://ip-check.info/description.php

Kamkar, S. (2010, September 20). Evercookie.
Samy Kamkar’s homepage. Retrieved November
13, 2012, from http://samy.pl/evercookie/

Kohno, T., Broido, A., & Claffy, K. C. (2005).
Remote physical device fingerprinting. IEEE
Transactions on Dependable and Secure Comput-
ing, 2(2), 93–108. doi:10.1109/TDSC.2005.26.

Kontaxis, G., Polychronakis, M., Keromytis, A.
D., & Markatos, E. P. (2012). Privacy-Preserving
Social Plugins. In Proceedings of the 21st USENIX
Conference on Security Symposium (pp. 30-30).
Berkeley, CA: USENIX Association.

Krane, D. (2008). Majority Uncomfortable with
Websites Customizing Content Based Visitors
Personal Profiles. Harris Interactive press release.
Retrieved November 13, 2012, from http://www.
harrisinteractive.com/vault/Harris-Interactive-
Poll-Research-Majority-Uncomfortable-with-
Websites-Customizing-C-2008-04.pdf

Krishnamurthy, B. (2010). Privacy leakage on the
Internet. Presented at 77th Internet Engineering
Task Force. Anaheim, CA.

Krishnamurthy, B., & Wills, C. E. (2006). Gen-
erating a privacy footprint on the Internet. In
Proceedings of the 6th ACM SIGCOMM Confer-
ence on Internet Measurement (pp. 65-70). New
York: ACM Press. Retrieved from http://doi.acm.
org/10.1145/1177080.1177088.

Krishnamurthy, B., & Wills, C. E. (2009). Privacy
diffusion on the web: A longitudinal perspective.
In Proceedings of the 18th International Confer-
ence on World Wide Web (pp. 541-550). New
York: ACM Press. Retrieved from http://doi.acm.
org/10.1145/1526709.1526782

Local Shared Objects. (2012). Local shared object.
Wikipedia. Retrieved November 13, 2012, from
http://en.wikipedia.org/wiki/Local_shared_object

Loveless, A. (2011). EU Cookie Law – It ain’t
all about cookies (or browsers). Enchilada. Re-
trieved November 13, 2012, from http://www.
enchiladadigital.com/2011/07/24/eu-cookie-law-
cookies-browsers/

Mansour. (2011). visipisi. Retrieved November
13, 2012, from http://oxplot.github.com/visipisi/
visipisi.html

Marhsall, J. (2011). Device Fingerprinting Could
Be Cookie Killer. ClickZ – Marketing News & Ex-
pert Advice. Retrieved November 13, 2012, from
http://www.clickz.com/clickz/news/2030243/
device-fingerprinting-cookie-killer

Mayer, J. (2009). “Any person... a pamphleteer”
Internet Anonymity in the Age of Web 2.0. Un-
published thesis. Retrieved November 13, 2012,
from http://www.stanford.edu/~jmayer/papers/
thesis09.pdf

Mayer, J. R., & Mitchell, J. C. (2012). Third-Party
Web Tracking: Policy and Technology. In Proceed-
ings of the 2012 IEEE Symposium on Security and
Privacy (pp. 413-427). Washington, DC: IEEE
Computer Society. Retrieved fromhttp://dx.doi.
org/10.1109/SP.2012.47

McDonald, A. M., & Cranor, L. F. (2010). Beliefs
and behaviors: Internet users’ understanding of
behavioral advertising. In Proceedings of the 38th
Research Conference on Communication, Infor-
mation and Internet Policy. Arlington, VA: TPRC.

Miller, T. (2002). Passive OS Fingerprinting: De-
tails and Techniques. The SANS institute. Retrieved
November 13, 2012, from http://www.ouah.org/
incosfingerp.htm

164

Tracking and Fingerprinting in E-Business

Mowery, K., Bogenreif, D., Yilek, S., & Shacham,
H. (2011). Fingerprinting Information in JavaS-
cript Implementations. In Proceedings of the Web
2.0 Security and Privacy 2011. Washington, DC:
IEEE Computer Society.

Mowery, K., & Shacham, H. (2012). Pixel Perfect:
Fingerprinting Canvas in HTML5. In Proceed-
ings of the Web 2.0 Security and Privacy 2012.
Washington, DC: IEEE Computer Society.

Mulliner, C. (2010). Random tales from a mobile
phone hacker. Presented at CanSecWest 2010.
Vancouver, WA.

Norbert. (2011). Web browser fingerprinting.
SecurityAnaly.st Blog. Retrieved from http://
securityanaly.st/browser-fingerprinting/

Oracle. (2011). Oracle Adaptive Access Manager.
Oracle Fusion Middleware. Retrieved November
13, 2012, from http://www.oracle.com/tech-
network/middleware/id-mgmt/oaam11gr1ps1-
ds-398161.pdf

Perry, M. (April 10, 2011). Torbutton Design
Documentation. Technical report. Retrieved No-
vember 13, 2012, from https://www.torproject.
org/torbutton/en/design/#fingerprinting

Perry, M. (2011, April 9). Ticket #2872: Limit the
fonts available in TorBrowser. Tor Bug Tracker &
Wiki. Retrieved November 13, 2012, from https://
trac.torproject.org/projects/tor/ticket/2872

Perry, M. (2011, September 26). Ticket #4099:
Disable TLS Session resumption and Session IDs.
Tor Bug Tracker & Wiki. Retrieved November 13,
2012, from https://trac.torproject.org/projects/tor/
ticket/4099

Perry, M., Clark, E., & Murdoch, S. (2011,
December 28). The Design and Implementation
of the Tor Browser. Technical report. Retrieved
November 13, 2012, from https://www.torproject.
org/projects/torbrowser/design/

Pfitzmann, A., & Hansen, M. (2010). A terminol-
ogy for talking about privacy by data minimiza-
tion: Anonymity, Unlinkability, Undetectability,
Unobservability, Pseudonymity, and Identity
Management. Privacy and Data Security, TU
Dresden, Faculty of Computer Science, Institute
of Systems Architecture. Retrieved November
13, 2012, from http://dud.inf.tu-dresden.de/
Anon_Terminology.shtml

Regalado, A. (2012, June 22). Online Ads That
Know Who You Know. MIT Technology Review.
Retrieved November 13, 2012, from http://www.
technologyreview.com/news/428048/online-ads-
that-know-who-you-know/

Reschl, P., Mulazzani, M., Huber, M., & Weippl,
E. (2011). Poster Abstract: Efficient Browser Iden-
tification with JavaScript Engine Fingerprinting.
In Proceedings of the Annual Computer Security
Applications Conference 2011 (ACSAC). Orlando,
FL: ACM.

Roesner, F., Kohno, T., & Wetherall, D. (2012).
Detecting and Defending Against Third-Party
Tracking on the Web. In Proceedings of 9th USE-
NIX Symposium on Networked Systems Design
and Implementation (pp. 12-12). Berkeley, CA:
USENIX Association.

Ruef, M. (2008). Browserrecon. Browserrecon
project – Advanced web browser fingerprinting.
Retrieved November 13, 2012, from http://www.
computec.ch/projekte/browserrecon/

Schmücker, N. (2011). Web Tracking. Technical
report. Retrieved November 13, 2012, from http://
www.snet.tu-berlin.de/fileadmin/fg220/courses/
SS11/snet-project/web-tracking_schmuecker.pdf

Shankland, S. (2010). Google real-time search:
6 min. to spot quake. Deep Tech – CNET News.
Retrieved November 13, 2012, from http://news.
cnet.com/8301-30685_3-10428590-264.html

165

Tracking and Fingerprinting in E-Business

Simpson, G. H. (2005, March 31). United Virtuali-
ties develops ID backup to cookies, Browser-Based
‘Persistent Identification Element’ will also restore
erased cookie. Whiptech Technologies. Retrieved
November 13, 2012, from http://www.whiptech.
com/services.security/PIE.and.Cookies.html

Soltani, A. (2011) Respawn redux (Follow up to
Flash Cookies and Privacy II). Ashkan Soltani’s
homepage. Retrieved November 13, 2012, from
http://ashkansoltani.org/docs/respawn_redux.
html

Soltani, A., Canty, S., Mayo, Q., Thomas, L., &
Hoofnagle, C. J. (2009, August 10). Flash Cookies
and Privacy. Social Science Research Network.
Retrieved November 13, 2012, from http://ssrn.
com/abstract=1446862

Stamm, S. (2010). Plugging the CSS History
Leak. Mozilla Security Blog. Retrieved November
13, 2012, from https://blog.mozilla.org/secu-
rity/2010/03/31/plugging-the-css-history-leak/

Stat Owl. (2012). Rich Internet Application Market
Share. Retrieved November 13, 2012, from http://
www.statowl.com/custom_ria_market_penetra-
tion.php

The Simple Computer. (2012, June 10). Coping
Mechanisms: Fingerprinting, CDI and How to
Deal with it. the_simple_computer, digital security
and privacy made easy. Retrieved November 13,
2012, from http://thesimplecomputer.info/finger-
printing-and-clientless-device-identification.html

ThreatMetrix. (2012). ThreatMetrix™ Cyber-
crime Defender Platform Datasheet. ThreatMetrix
| Advanced Cybercrime Prevention Solutions.
Retrieved November 13, 2012, from http://www.
threatmetrix.com/docs/ThreatMetrix-Cyber-
crime-Defender-Platform.pdf

Tor. (2012). Tor Browser Bundle. Tor Project.
Retrieved November 13, 2012, from https://www.
torproject.org/projects/torbrowser.html.en

TRUSTe. (2009). 2009 Study: Consumer Attitudes
About Behavioral Targeting. Research report.
Retrieved November 13, 2012, from http://www.
truste.com/pdf/TRUSTe_TNS_2009_BT_Study_
Summary.pdf

TRUSTe & Harris Interactive. (2011). Privacy
and online behavioral advertising. Retrieved
November 13, 2012, from http://truste.com/ad-
privacy/TRUSTe-2011-Consumer-Behavioral-
Advertising-Survey-Results.pdf

Turow, J., King, J., Hoofnagle, C. J., Bleakley, A.,
& Hennessy, M. (2009). Americans reject tailored
advertising and three activities that enable it. Social
Science Research Network. Retrieved November
13, 2012, from http://papers.ssrn.com/sol3/papers.
cfm?abstract_id=1478214

Viecco, C. (2012). Bug 732096 – Add a prefer-
ence to prevent local font enumeration. Bug-
zilla@Mozilla. Retrieved November 13, 2012,
from https://bugzilla.mozilla.org/show_bug.
cgi?id=732096

Wang, Y., Burgener, D., Flores, M., Kuzmanovic,
A., & Huang, C. (2011). Towards Street-Level
Client-Independent IP Geolocation. In Proceed-
ings of the 8th USENIX Conference on Networked
Systems Design and Implementation (pp. 27-41).
Berkeley, CA: USENIX Association.

Weinberg, Z., Chen, E. Y., Jayaraman, P. R., &
Jackson, C. (2011). I Still Know What You Visited
Last Summer: Leaking Browsing History via User
Interaction and Side Channel Attacks. In Proceed-
ings of the 2011 IEEE Symposium on Security and
Privacy (pp. 147–161). Washington, DC: IEEE
Computer Society. Retrieved fromhttp://dx.doi.
org/10.1109/SP.2011.23

Wondracek, G., Holz, T., Kirda, E., & Kruegel,
C. (2010). A Practical Attack to De-Anonymize
Social Network Users. In Proceedings of the
2010 IEEE Symposium on Security and Privacy
(pp. 223–238). Washington, DC: IEEE Computer
Society. doi: 10.1109/SP.2010.21.

166

Tracking and Fingerprinting in E-Business

Wramner, H. (2011). Tracking Users on the World
Wide Web.Unpublished Master’s thesis. Retrieved
November 13, 2012, from http://www.nada.kth.
se/utbildning/grukth/exjobb/rapportlistor/2011/
rapporter11/wramner_henrik_11041.pdf

Yampolskiy, R. V., & Govindaraju, V. (2008).
Behavioural biometrics: A survey and classifica-
tion. International Journal of Biometrics, 1(1),
81–113. doi:10.1504/IJBM.2008.018665.

Yen, T., Huang, X., Monrose, F., & Reiter, M.
K. (2009). Browser Fingerprinting from Coarse
Traffic Summaries: Techniques and Implications.
In U. Flegel, & D. Bruschi (Eds.), Detection of
Intrusions and Malware, and Vulnerability As-
sessment: 6th International Conference, DIMVA
2009, Como, Italy, July 9-10, 2009. Proceedings
(pp. 157–175). Berlin, Germany: Springer-Verlag.
http://dx.doi.org/10.1007/978-3-642-02918-9_10

Yue, C., & Wang, H. (2009). Characterizing
Insecure JavaScript Practices on the Web. In Pro-
ceedings of the 18th International Conference on
World wide Web (pp. 961-970). New York: ACM
Press. doi:10.1.1.153.3166.

Zalewski, M. (2011). Rapid history extraction
through non-destructive cache timing (v8). [lcam-
tuf.coredump.cx]. Retrieved November 13, 2012,
from http://lcamtuf.coredump.cx/cachetime/

KEY TERMS AND DEFINITIONS

Anonymity Paradox: The problem of in-
creasing identifiability when concealing (private)
information. In other words, a user is likely to end
up in a rather small anonymity set if the substitute
(fake) information is not chosen carefully.

Behavioral Tracking and Advertising: A way
of observing and analyzing the user’s interaction
with one or more Websites, rather than simply
registering Webpage downloads. The collected
information may include the contents of the clip-
board, mouse heatmaps, keystrokes, scroll reach,
and so forth, which is later used for behavioral

advertising (i.e., when advertisements are tailored
to predicted user behavior).

Fingerprint: Set of attributes or settings that
is uniquely identifying for a selected entity within
a set of others (e.g., browser/device of a visitor
among other visitors).

History Stealing: Also referred to as history
leakage, history detection or history sniffing, his-
tory stealing is a way of extracting a part of the
history of the browser (or other state-descriptive
information) without the consent of the user.
Such an attack normally cannot acquire the entire
browsing history; the adversary must choose a set
of addresses to check before delivering the attack.

Identification, Tracking, and Profiling: In
the context of the Web, these terms refer to the act
of a website uniquely identifying visitors, tracking
theirs actions in order to create profiles on them.
These profiles are later monetized; for example,
by showing advertisements tailored for the profile,
and therefore to the preferences of the visitor.

Implicit and Explicit Data: Explicit data
refers to some piece of information communicated
by the client (e.g., user agent string) or published
on the Web, while implicit data refers to informa-
tion that can be extrapolated from the actions,
behavior, status, attributes, and so forth, of the
client or from other explicit data.

Storage-Based Tracking: Regular tracking
techniques store an identifier on the client (e.g.,
as browser cookies) in order to be able to identify
returning visitors and monitor their activities.

ENDNOTES

1 http://www.clicktale.com
2 Also called Web beacons, clear GIFs, 1x1

GIFs, tracking pixels, pixel tags or simply
pixels.

3 Firesheep raised awareness on Facebook ses-
sion cookies transmitted without protection:
http://codebutler.github.com/firesheep/

4 Stealing Gmail session cookies via ac-
tive sidejacking: http://seclists.org/bug-
traq/2007/Aug/70

