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ABSTRACT

Online user tracking is a widely used marketing tool in e-business, even though it is often neglected 
in the related literature. In this chapter, the authors provide an exhaustive survey of tracking-related 
identification techniques, which are often applied against the will and preferences of the users of the 
Web, and therefore violate their privacy one way or another. After discussing the motivations behind the 
information-collecting activities targeting Web users (i.e., profiling), and the nature of the information 
that can be collected by various means, the authors enumerate the most important techniques of the 
three main groups of tracking, namely storage-based tracking, history stealing, and fingerprinting. The 
focus of the chapter is on the last, as this is the field where both the techniques intended to protect users 
and the current legislation are lagging behind the state-of-the-art technology; nevertheless, the authors 
also discuss conceivable defenses, and provide a taxonomy of tracking techniques, which, to the authors’ 
knowledge, is the first of its kind in the literature. At the end of the chapter, the authors attempt to draw 
the attention of the research community of this field to new tracking methods.
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INTRODUCTION

Many Website operators involved in end-user 
oriented e-business have an interest in monetizing 
their user base (e.g., by realizing as many clicks 
on their advertisements as possible). One way of 
achieving this goal is collecting diverse informa-
tion about the user (or profiling her), the vehicles 
of which are technologies that can be used for 
identifying returning visitors, and those that infer 
sensitive information (such as browsing history) 
that users are not necessarily willing to disclose 
(e.g., purchase preferences). This controversial 
method may be a necessity for better serving the 
needs of online customers, but it often goes beyond 
user demands, and is used for business purposes 
against the will of the clients.

It is not surprising that certain users are 
concerned about pervasive profiling. In fact, 
this problem has been discussed from so many 
viewpoints in academia that not only effective 
technological, but also more or less effective leg-
islative countermeasures have been implemented 
in order to mitigate the privacy risks arising from 
the proliferation of a subset of profiling-related 
technologies. That said, this chapter is inspired 
by the rest (primarily by fingerprinting attacks), 
for which neither defensive technology nor the 
law seems to be able to keep up with the pace 
of development dictated by pro-profiling actors, 
leaving users of the Web powerless against and 
vulnerable to them.

PROFILING AND USER 
PRIVACY ON THE WEB

There are several motives of profiling users on 
the Web. For instance, an enormous number of 
Web services can be accessed for free; however, 
contrary to how it looks (or is communicated), 
free access often comes with a greater sacrifice 
of user privacy, as many of these companies gain 
revenue from profiling-related activities, such 

as pursuing behavioral advertising or monetiz-
ing user profiles by other means. According to 
the report of IAB Internet Advertising Revenue 
Report (IAB, 2012), the advertising revenues set 
a new record at $8.4 billion in Q1 2012, clearly 
showing the significance and the growth of the 
advertising industry.

In two recent studies, Goldfarb & Tucker 
(January and May, 2011) concluded that targeted 
advertising can successfully influence individuals 
in favor of buying a product, and targeted advertis-
ing has a significant positive (economic) impact 
on advertising. These claims are consistent with 
the ever-increasing presence of Web tracking 
techniques (the most used tools for profiling) and 
the revenues the industry reached in 2012, presum-
ably with a continuously increasing proportion 
of behavioral advertising. By summarizing the 
measurements of Krishnamurthy & Wills between 
2006 and 2012 (Krishnamurthy & Wills, 2006; 
2009; Krishnamurthy, 2010), Mayer & Mitchell 
(2012) highlighted that the coverage on top sites 
of large tracking companies increased during these 
years, and so did the number of trackers per page. 
Today, researchers estimate that there are track-
ers capable of monitoring more than one fifth of 
user activity while browsing online (Roesner et 
al., 2012).

However, as can be expected, tracking for 
targeted advertising is not favored by users. A 
Harris Interactive poll (Krane, 2008), a TRUSTe 
survey (2009), and a nationally representative 
telephone survey in the USA conducted by Turow 
et al. (2009) uniformly confirmed that the majority 
of individuals (around 60% in all cases) found it 
uncomfortable when they faced advertisements 
on Websites adjusted to their preferences by pre-
viously observing their online activities. A more 
recent online survey conducted by McDonald & 
Cranor (2010) also confirmed this result with 
55% of respondents rejecting targeted advertising; 
another recent survey conducted by TRUSTe in 
partnership with Harris Interactive (2011) reported 
a higher rate of respondents, namely 85%, who 
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would not consent to being tracked for targeted 
advertising.

Nevertheless, targeted advertising is not the 
only goal of tracking and profiling; there are several 
other commercial use cases. Besides monetizing 
profiles in trades (i.e., exchanging large databases 
of pseudonymous profiles), they can be utilized 
to provide additional user interface features; for 
example, recommendations on news or Web shop 
items, customized user interfaces, or to facilitate 
price discrimination (dynamic pricing, i.e., adjust-
ing price tags for customer price sensitivity for 
profit maximization of the vendor).

The case of Amazon.com–namely when the 
company offered the same DVD at different prices 
for different customers–is a frequently cited ex-
ample of dynamic pricing (Davis, 2000). After 
customers discovered pricing differences while 
discussing their experiences in online forums, 
Amazon had to remove this feature and apologize 
for their experiment. Amazon claimed that prices 
were merely random, instead of being tailored for 
customer profiles.

Web users relate a bit ambivalently to dynamic 
pricing. Although it is a known and unpopular 
feature among them (Cranor, 2003), it becomes 
rather popular when it is communicated in the 
form of discounts: according to the survey of 
McDonald & Cranor (2010), 80% of respondents 
would consent to tracking to receive discounts 
tailored for their purchase interests, suggesting 
that price discrimination is more acceptable if it 
is communicated as a reward or bonus rather than 
a way of invading privacy.

Finally, we mention security, where tracking 
(and profiling) is applied in order to identify po-
tential malicious users and prevent intrusions. In 
practice, this is pursued by many security-sensitive 
companies, such as banks or credit card compa-
nies. For instance, ThreatMetrix™ Cybercrime 
Defender Platform uses device identification to 
identify clients when they detect fraudulent access 
to prevent further attacks (ThreatMetrix, 2012); 
similarly, the Oracle Adaptive Access Manager 

fingerprints all types of devices (Oracle, 2011). 
Somewhat in contrast with user attitude towards 
commercial tracking, a survey of TRUSTe & 
Harris Interactive (2011) shows that 42% of re-
spondents would consent to tracking to enhance 
security and to detect frauds. It must be noted that 
such identification can be used for quite different 
and questionable purposes, such as identification 
for censorship or surveillance, too.

Who Needs Users to be Identified?

There are several actors in the online era arguing 
against or in favor of identification. Normally, 
the only participant arguing against is the user 
herself, for whom identification is an undesired 
feature, up to the point when it brings benefits (it 
unlocks extra functionality or the user gains extra 
credit). On the other hand, there are numerous 
other participants having their own objectives and 
goals, who want users to be identified regardless 
of their privacy preferences.

As it has become clear so far, advertising and 
marketing companies, and other parties pursuing 
related activities are the most prominent actors 
(e.g., search engine optimization, retargeting, 
analytics services). Profiles can also be used in 
web shops for product recommendation systems, 
or for assisting pricing strategies, but arbitrary 
service providers may use profiles and tracking 
to enhance the functionality of their services. 
Among many others, social networks, content 
providers and distributors, service platforms, 
hosting services belong to this category.

Data collectors and traders monetize pro-
files directly. Identification also plays a strong 
role in censorship and surveillance, and–as dis-
cussed previously–also in security; for example, 
identification can help prevent click frauds by 
limiting the number of paid clicks per client per 
advertisement (Schmücker, 2011). On the other 
hand, malicious parties, such as identity thieves, 
phishers, and other kinds of online stalkers may 
also find profiles useful.
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The Process of Profiling

In the early years of the Web, tracking was the 
only way to profile users. Attributes learned by 
tracking are called implicit data, since these are 
not expressed by the user, but deduced from her 
actions. In the early 2000s, with the spread of 
blogs, social networks, and so forth, and the social 
content contribution to the services of the Web 
2.0 era, another source of information became 
available, called explicit data, referring to self-
expressed information, collected by other means 
(e.g., using web crawlers) for extending profiles. 
Development of search engines catalyzed this 
process by supporting the access to public sources 
for explicit data, to the point where the spread of 
information became real time (e.g., Shankland, 
2010). Instant accessibility and the emergence of 
a variety of “Web and content archiving” services 
(e.g., Fitzpatrick, 2012), had a negative effect on 
user privacy, as it simply eliminated the choice 
of revocation.

Classification of Information Sources

In their work, Gulyás et al. (2012) categorize 
profiling sources into three categories (complex 
profiling techniques may use multiple of these): 
services of information superpowers (large com-
panies having a large service portfolio capable of 
capturing a significant fragment of user activity), 
public data sources, and tracking. Here, we further 
refine their classification by categorizing sources 
regarding the data types and the way users typi-
cally interact with these sources. (It must be added 
that exceptional, but less relevant cases do exist; 
for example, first party trackers can theoretically 
be realized, but the advertising business is based 
rather on third-party trackers.) Our classification 
is shown in Table 1.

According to this classification, a social net-
working site with a social widget in widespread 
use over the internet–such as Facebook’s Like 
button–is classified as both using sources of an 

information superpower and tracking users. N.b. 
that the case of Facebook may be a bit more 
complex, as according to an earlier version of 
their privacy policy, the social service reserved 
the right to crawl public data sources in order to 
extend their users’ profiles (Gulyás, 2009).

The Three Steps of Profiling

The implications of tracking become visible after 
understanding the context of identification and 
related economic activities (i.e., how profiling is 
performed). Identification itself does no harm to 
user privacy; the question is how identification is 
used. Implication of tracking techniques discussed 
later in this chapter only differ in the extent of 
identification (i.e., more generic identification 
implies larger profiles that has a wider range of 
use): while some techniques identify the user 
only in the same browser (e.g., tracking cookies, 
CSS-based history stealing attacks) or the same 
device (e.g., cross-browser fingerprinting, Flash 
PIEs), others achieve device-independent personal 
identification (e.g., real-world identification via 
history stealing, biometric fingerprinting).

The scheme of the process of personal data 
collection is depicted on Figure 1. The goal of 
the process is to create fine-grained user profiles 
to be used or sold. In the first step, profilers use 
the previously-discussed information sources for 
collecting information, the data from which is 
processed, combined and further refined in the 
second step. In step three, data can be monetized 
by several means.

During the collection process, numerous types 
of data are logged to profiles–we just highlight a 
few examples. Simply put, trackers can analyze 

Table 1. Classification of profiling sources 

Implicit data Explicit data

First party Services of information superpowers

Third party Tracking Public data sources
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the visited Websites from different perspectives, 
such as regarding their content (for contextual 
advertising), their meaning (for semantic advertis-
ing), or the attitude of the creator towards the 
content itself (for sentiment analysis)–information 
that is rather static. That said, behavior profiles 
can also include clickstream information (i.e., 
how the user navigates through sites, to determine 
where she is off the track the advertiser planned, 
or to predict future behavior, e.g., to determine 
the willingness to order an item online)Van den 
Poel & Buckinx, 2005)). There are trackers that 
operate link shortening services and provide 
content sharing widgets in order to observe social 
sharing connections (Regalado, 2012). In our 
opinion, this trend will gain momentum, and 
advertisers will extend their view to collect even 
more metadata on daily routine, (social) behavior 
and connections.

What Do they Collect?

However, trackers also reach towards a lower 
metalevel. Jang et al. (2010) report several cases of 
mouse, keyboard, and clipboard tracking. Within 
the Alexa top 1,300 Websites, they found such 
tracking in 115 cases, where the tracking happened 
without any visual feedback to the user. Of these 
sites, 7 used the behavior tracking service of tynt.
com, which reported mouseover and copy events, 
and also transferred the copied text to tynt.com. 

Jang et al. also mention another tracker company, 
ClickTale, who create an aggregate heatmap of 
mouse movements. According to ClickTale’s web-
site1, in addition to heatmaps, they record mouse 
clicks, scroll reach, keystrokes, and offer reports 
based on the analysis of the data. Besides, Jang et 
al. note that many sites in their experiments use 
their own tracking techniques instead of using 
external services.

Service providers, and especially information 
superpowers, are in an even better position, as they 
can collect metainformation of the habits of their 
users. For instance, Google can be aware of their 
users’ acquaintances (via Gmail and Google+), 
daily routine (with Google Calendar), interests (via 
Google Reader), and if Google Search is set as the 
home page of a browser, Google can estimate when 
the computer is first turned on, and how long it is 
operated. By utilizing geolocalization techniques, 
even home and work location can be determined, 
which, when coupled together, can be used for 
unique identification (Golle & Partridge, 2009).

Privacy Implications of Identification

When a user is identified and tracked, her activi-
ties are linked together in her profile, meaning 
a greater loss of user privacy for many reasons. 
For example, a profiled user can be influenced 
in her buying decisions, or her search results can 
be biased according to business objectives. A 

Figure 1. The process of collecting, processing and using different types of data
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profiled user is tied to her past actions, which can 
be used for abuses, denigration, or may simply 
cause uncomfortable situations.

As an example, let us imagine a father looking 
for gifts for his daughter’s birthday. After spend-
ing a few hours of searching online and visiting 
some related sites, he leaves his laptop on his desk. 
Later, his daughter arrives and uses his laptop to 
check out a website. We could imagine how sur-
prised she would be to see the specific gift-related 
advertisements along the site. Clearly, the father 
would have liked to separate his gift-searching 
activities from regular ones.

The goal would be to separate activities con-
ducted on different sites, or–more formally–to 
reach the unobservability of the actions of the 
user (See Figure 2). Regarding a specific site visit, 
unobservability means anonymity towards this 
site (i.e., the visitor cannot be identified within 
the group of visitors), plus undetectability of the 
visit for both other sites and other Web actors 
(Pfitzmann & Hansen, 2010). At this time, these 
goals cannot be accomplished by using default Web 
browsing software (not even in private browsing 
mode; Aggarwal et al., 2010); some success, how-
ever, can be achieved by using anonymous Web 

browsers, such as Tor and JondoFox, which are 
reaching for such high aims (Perry et al., 2011).

Penetration of User Tracking 
Techniques

We differentiate between within- and cross-site 
trackers only; however, further refinement of 
classification is possible regarding the state-of-
the-art tracking landscape (Roesner et al., 2012). 
In the case of the first type of trackers, the track-
ing cookie is owned by the visited site, and–since 
the tracker is never visited directly–the cookie is 
intentionally leaked for tracking (which is referred 
to as cookie handover). Cross-site trackers own 
the cookie themselves, enabling tracking user 
activities over site boundaries (the cookie can 
be set from a first- or third-party position, too).

However, both cooperation between trackers 
and combination of these types have been reported 
recently (Roesner et al., 2012). Cooperating track-
ers share tracking information–such as identifiers 
and location information upon a visit–which means 
that a tracker that is not present can learn about it. 
For instance, Roesner et al. mention the example 
of admeld.com leaking its tracking cookie and the 

Figure 2. The scheme of undetectable web browsing: a request is unobservable for all actors, and 
anonymous towards communication partners (i.e., websites). Ideally, this means no actors (users and 
Websites) can decide whether a user made a request or not, and no Websites can specify which user 
made the request it received (responses are proxied through the anonymous Web browsing service).
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top level page URL to turn.com. Cooperating track-
ers can seem to be misleadingly privacy-friendly, 
as for cooperating parties a single detector that 
invokes others later or sends feedback on detours 
can have a larger implication on privacy than 
it seems. Combination of tracker types implies 
that a within-site tracker gains cross-site tracker 
capability: the within-site tracker is embedded 
into the detector code of the cross-site tracker (the 
cookie is owned by the cross-site tracker). In this 
case, the cross-site tracker learns environmental 
information of the user via its tracker asset, but 
identifies the user via the within-site tracker.

Empirical measurements on tracking tech-
niques indicate significant penetration. Gomez 
et al. (2009) analyzed 393,829 unique domains 
(collected by the users of the Ghostery Firefox 
plugin) of which 88.4% used Google Analytics (a 
within-site tracker), and top 50 Websites contained 
at least one tracker, but some had as many as 100. 
Ayenson et al. found Google Analytics to be pres-
ent at 97 of the QuantCast.com top 100 sites in 
2011. In their recent work, Roesner et al. (2012) 
also confirmed significant tracker presence while 
analyzing the Alexa top 500, as they found 7,264 
instances of 524 trackers present on these sites. 
According to their work, “tracker morbidity” is 
depicted as the top 20 trackers being present in 
26-297 sites in the top 500.

Trackers benefit from being visited as first-
party sites as they are allowed to set cookies 
even when third-party cookies are blocked in the 
browser agent. Although cross-site trackers are 
usually not visited directly, there are two excep-
tions. First, social networking sites are visited 
voluntarily for their services, and as confirmed 
by the results of Roesner et al., some sites force 
visitors to view them from a first-party position 
(e.g., by opening a popup window or applying a 
redirection chain). Clearly, both are used to cir-
cumvent third-party cookie blocking settings of the 
browser agent, as in the case of insightexpressai.
com, mentioned by Roesner et al.

Penetration of social widgets is also worth men-
tioning. In May 2011, the presence of Facebook, 
Google, and Twitter widgets was estimated at 33%, 
25%, and 20% respectively among top 1,000 sites 
(Efrati, 2011), but surprisingly, their presence 
seems to stagnate. Roesner et al. measured the 
presence of both Facebook and Google at around 
30% among the Alexa top 500 sites, and Twitter 
at 18.6%. In another recent work, Kontaxis et al. 
(2012) estimate the presence of the Facebook 
Like button at 35% among the top 10,000 sites 
(in June 2012). However, widgets also provide 
income for another group of services, namely 
companies hosting embeddable widget collections 
(e.g., AddThis), who fund their services from 
selling data obtained by tracking visitors (Mayer 
& Mitchell, 2012).

As revealed in this section, tracking is widely 
adopted for tracking users. It is not realistic to 
assume that these techniques are going to van-
ish in the near future; rather, on the contrary, 
we expect them to spread further and to develop 
new forms to walk one step ahead of consumers. 
In the next chapters, we review currently known 
and emerging techniques. We discuss storage-
based tracking methods first, and “storageless” 
techniques–which are expected to dominate in 
near future–afterwards.

BASIS OF TRACKING: 
REGULAR TECHNIQUES

In the early years of the Internet, users were 
identifiable uniquely by their IPv4 addresses, but 
IP-based tracking soon became obsolete due to 
the widespread use of network address translation 
(NAT) and dynamic IP addresses, as in both cases 
multiple clients may use the same address. Despite 
its inaccuracy as an identifier, the IP address is still 
usable when augmented with other information 
(e.g., the user agent string), and can still play a 
part in tracking as part of a unique identifier (Yen 
et al., 2012). In addition, the IPv4 addresses are 
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widely used for visitor localization. Free databases 
exist for pairing addresses with country-city loca-
tions, such as (IpToCountry, 2012), and research 
indicates that even a finer-grained localization is 
possible going down to street level (Wang et al., 
2011). The role of the IP addresses may change 
in the future as IPv6 is expected to spread, since 
its addresses are practically capable of covering 
all existing and future devices, thereby eliminat-
ing the need for dynamic or translated addresses.

As IP addresses were not reliable anymore, 
Websites and trackers started to store unique identi-
fiers on the visitors’ computers, in the storage of 
their browsers, first in the cookie database. After a 
while, an increasingly relevant proportion of users 
started to delete cookies to opt out of tracking, 
and coevolution has characterized web privacy 
since then. When trackers develop new tracking 
techniques, related protection mechanisms follow. 
In this section, we review the classic storage-based 
techniques.

Storage-Based Techniques

Cookies have some associated basic protection, 
such as the same-origin policy: if a Website sets 
a cookie, only the same site can read it later, al-
lowing the identification of returning visitors, 
but not cross-site tracking. However, Website 
operators soon realized that if they installed 
Web bugs2 on multiple sites, they could easily 
extend their reach. Web bugs are small, usually 
1x1 pixel-sized invisible images, and based on a 
simple mechanism. When the user visits a site, 
and the content is loaded, the Web bug is down-
loaded from the third-party site (i.e., the tracker), 
who has a chance to read and write cookies, and 
can detect the first-party site address through the 
referrer HTTP header. Therefore, identification is 
possible, and the web bug owner can determine 
particular attributes of the visitor in addition to 
the IP address and browser agent information. 
Subsequent tracking techniques usually leverage 

the same principles with smaller modifications 
(e.g., using scripts or frames).

Problems related to cookies can be observed 
with other storage-based mechanisms, too. As we 
have mentioned previously, some trackers leak 
cookies intentionally, but malicious third parties 
may also try to steal cookies, for instance by having 
their scripts included into the site content, which 
seems to be common: Yue & Wang (2009) found 
that 66.4% of sites embedded external scripts in 
their experiment. In addition, user-contributed 
content can also contain cookie-stealing malicious 
scripts (e.g., cross-site scripting). Cookies are 
sent along with the request, and then, if they are 
being transmitted without protection, they can be 
subject to traffic sniffing3 or active sidejacking4. 
Fortunately, in contrast to cookies, most stored 
objects are not transmitted automatically (e.g., 
Flash cookies and HTML5 storages), and therefore 
not affected by these threats.

As a relevant fraction of users soon started 
deleting cookies, trackers moved to using rich 
internet application storages, such as the Flash 
(Local Shared Objects) and SilverLight (Isolated 
Storage) storages. Both plugins are widespread 
(respectively 95.78%, 69.33% according to 
Stat Owl (2012), and their storages share some 
characteristics with cookies, with additional ad-
vantages (for trackers). Being isolated from the 
browser, these plugins allow the use of the same 
identifier in multiple browser agents in parallel 
(See Figure 3), and default expiration dates also 
favor tracking–perhaps larger cookie sizes, too. 
For Flash, cookie size starts from 100 KB (for 
requests having a larger size, the user is asked for 
permission), and permanent expiration is set by 
default (Local Shared Object, 2012). In the first 
years, lower awareness surrounded these tech-
niques, but nowadays users are more aware, and 
there are standardized ways to control (and clear) 
their storages such as the NPAPI ClearSiteData 
(Chandna, 2011).

The first instance of announcing Flash cookies 
being used for tracking, were the Persistent Iden-
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tifier Elements (PIEs for short), which were an-
nounced in 2005 (Unitied Virtualities, 2005). 
Later, Flash cookies were reported to be used for 
“cookie respawning” (regenerating) cookies to 
circumvent cookie deletion and user preferences, 
and were found to be present on 54 of the top 100 
sites (Soltani et al., 2009). Recent follow-up re-
search shows that Flash cookies are still present 
on 37 of the top 100 sites (Ayenson et al., 2011), 
but a lower rate was confirmed by Roesner et al. 
(2012), as in their experiment only 35 of 524 
trackers used Flash, and it was used as a backup 
only in 9 cases. The latter authors highlight the 
particular case of sodahead.com, where the Flash 
backup cookie was even encoded.

Ayenson et al. (2011) additionally report that 
trackers are also moving to HTML5 storages, as 
they found that 17 of the top 100 sites used them. 
The HTML5 storages allow larger storage (5 MB), 
and similarly to Flash permanent expiration is set 
as default. Roesner et al. (2012) find that only one 

percent of the Alexa top 500 stored identifiers in 
the HTML5 LocalStorage. However, they report 
two cases where LocalStorage was used instead of 
cookies, and a case where cookies were respawned 
from LocalStorage.

Different layers of the browser cache are also 
exploited for storing identifiers. A cache control 
mechanism, e-tags (or entity-tags) is used as 
backup for cookies, for instance, Ayenson et al. 
(2011) mention kissmetrics.com, and Wramner 
(2011) describes the use of e-tags in the tracking 
mechanisms of TradeDoubler. In their intended 
use, e-tags are used to determine if the online 
document has changed compared to the local 
cache, similarly to fingerprinting (hashing) docu-
ments for comparison. As a disadvantage (from 
the viewpoint of a tracker), e-tags are harder to 
handle, since reading and writing them requires 
exact URL matches. On the other hand, e-tags 
cannot be blocked with cookies, and they are 
even available in private browsing mode. Another 

Figure 3. Cross-browser tracking with Flash storage. After contacting the first site (1) a Flash based 
Web bug is downloaded from the tracker (2). After the Web bug is loaded it sets (or reads if it exists) the 
identifier (3) and sends it back to the tracker directly (4), augmented with profiling information (e.g., 
subject of site1.com). When visiting another site with another browser, a similar process is executed 
(5-8), which uses the same storage.
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control field, the last modified timestamp can also 
be exploited similarly to e-tags, simply by giving 
a unique date to each visitor.

Cached content can also be exploited for storing 
identifiers. The evercookie (2010) also uses this 
method: it draws the identifier on some pixels of 
an image, and then makes the browser cache it. 
In order to read the image, it is loaded onto an 
HTML5 canvas, where images can be managed on 
a pixel-level basis. Other content caches can also 
be used to store identifiers, such as variables in Ja-
vaScript, or entity properties in CSS. Operational 
caches are also available for tracking, such as the 
cache of HTTP authentication cache (Grossmann, 
2007), the HTTP 301 redirect cache (Bursztein, 
2011), the HTTP Strict Transport Security cache 
(Davidov, 2011), and the TLS session resumption 
cache, including TLS session IDs (Perry, 2011c).

There are even more storages exploited for 
tracking. The window.name property can store up 
to 2 MB; nevertheless, it starts from a clear value 
whenever a new window or tab is opened, and thus 
is cumbersome to use for tracking (evercookie, 
2010). Last but not least, the Internet Explorer 
userData storage also emerged as an alternative 
to the Flash storage (Benninger, 2006), and can 
be used for tracking, as it provides a relatively 
large storage (64 KB per page, and in total 640 
KB per domain), and not cleared when temporary 
files and cookies are removed.

It must be noted that many of the prior dis-
cussed techniques are often used in a combined 
manner, such as in the case of the evercookie 
(2010), replicating the identifier into as many 
places as possible. Trackers also prefer to use 
multiple storages at once; for example, Soltani 
(2011) reported that kissmetrics.com used Flash 
cookies, e-tags, and the HTML5 local storage to 
respawn deleted cookies.

Further Privacy Issues and 
Techniques Applied

The techniques discussed before can be applied 
to RSS (or Atom) channels; this is referred to as 
RSS tracking. In his recent thesis, Danis (2011) 
analyzed the possibilities of applying regular 
techniques to RSS channels, and found several 
flaws in the implementations in browsers and 
channel reader software. In our opinion, one of his 
most important finding is that by using internal 
frames (represented by the <iframe> HTML tag) 
security precautions (e.g., JavaScript blocking) can 
be bypassed easily, and, in addition, most reader 
software allows loading third-party images by 
default (with no options to block them), and also 
accepts cookies via these images.

Danis analyzed the channels of 40 Web pages 
selected from top listings, from which 11 displayed 
tracking advertisements, and reported two particu-
lar cases (nydailynews.com and microsoft.com), 
which used Web bugs to track their visitors, and 
collected browser, plugin, and OS information. 
Another major privacy problem of subscribing to 
RSS channels via browser agents is that the feed 
owner can observe the daily routine of subscribers, 
can determine workplace and home locations. This 
is also true in case of setting default home pages 
in browsers (especially in the case of services of 
information superpowers, such as Google search).

As another privacy threat, multiple sources of 
information can be used to enrich profiles. The 
browser itself provides information on several 
settings and variables which can be used for finger-
printing (e.g., the user agent string, plugin names 
and versions in an explicit list, screen resolution, 
and time zone), and plugins such as Java and Flash 
also leak identifying information on the operating 
system, hardware, or user settings, from which 
some–such as the OS information in Flash–cannot 
be spoofed (The Simple Computer, 2012). Plugins 
can also be used to evade the same-origin policy.

In addition, we highlight the example of URL 
referers, which are usually used to indicate the 
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origin of the arriving user (in the form of an 
URL). However, the URL referer also indicates 
the URL of the host environment for images and 
other embeddable content (Flash, Java, internal 
frames), and can also indicate the keywords the 
user searched for before arriving on the Website. 
Lastly, we mention that all on-disk information 
(especially traces left on public computers) is a 
potential target to offline attacks via malware, and 
therefore should be protected carefully.

HISTORY STEALING AND 
COUNTERMEASURES

History stealing is a way of extracting a part of 
the history of the browser–information which is 
otherwise hidden from the prying eyes of a Web-
site operator. In our broader interpretation of the 
term, it can refer to any way of determining if a 
site has been visited by the user. N.b. that none of 
these attacks can directly obtain the full browsing 
history; the adversary must choose a set of URLs 
to check before delivering the attack.

Leaking even the partial history can be dan-
gerous; for instance, it can be enough to uniquely 
identify the user within the group of visitors of a 
Website. Of course, an attack can also take the more 
direct approach of attempting to determine if the 
user regularly browses controversial Websites, or 
collecting the list of service providers with which 
the user does business (e.g., in order to facilitate 
a subsequent social engineering attack). It must 
be noted that, while most history stealing attacks 
normally cannot do more direct damage to the 
user than that, some go as far as identifying her 
based on data obtained from a social networking 
Website (See Classical CSS-Based Attacks), or 
determining if she is a member of a Website where 
users must sign in to access certain features (See 
Cross-Site Timing-Based Attacks).

Early techniques of history stealing exploit a 
vulnerability that had been included in browsers 
since the adoption of Cascade Style Sheets (CSS) 

until the developers of Firefox patched the gaping 
security hole in the 4th version of their browser 
(See Classical CSS-based Attacks). During 
that period, various authors suggested different 
methods of acquiring the browser history, but the 
terminology has never been sufficiently uniform, 
leading to several different names for the same 
class of attacks.

The term “history stealing” is used in–besides 
nonacademic contexts such as blog posts–(Wond-
racek et al., 2010), while many authors prefer the 
use of “history sniffing” (Jakobsson & Stamm, 
2006; Jang et al., 2010; Weinberg et al., 2011). 
Finally, others refer to these attacks simply as “his-
tory detection” (Janc & Olejnik, 2010a; 2010b), 
or “history leakage” (Wramner, 2011).

Attacks can be categorized along various 
properties. Most of them are scripted (e.g., 
implemented in JavaScript), though there are 
some markup language-based methods, too. 
Secondly, a nonscripted method can either re-
quire user interaction to complete the attack, or 
leak the browser history otherwise (e.g., through 
CSS). Thirdly, attacks vary in terms of accuracy 
(i.e., how certain their result is) and robustness 
(i.e., how much the set of identified elements of 
browsing history change over time). Fourthly, 
certain attacks only query domain names, while 
others work on the subdomain level. Fifthly, dif-
ferent algorithms perform differently in terms 
of the number of URLs that can be checked in 
a reasonable timeframe, and the CPU load they 
impose. Finally, other important factors include 
the repeatability and the generality of an attack.

In this section, we survey the history stealing 
techniques known to date, and categorize them 
based on the properties discussed previously, 
and also discuss possible protection mechanisms.

Timing-Based Attacks

Timing-based history stealing methods are timing 
attacks that infer browsing habits by querying the 
cache of the browser and that of the Domain Name 
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System or Service (DNS). The algorithms are 
based on the intuitive assumption that obtaining 
an object from a cache is significantly faster than 
getting it from a remote server.

The attack of Felten & Schneider (2000) on 
the browser cache makes use of a cacheable object 
(e.g., an image file from the main page of a news 
portal). The scripted version (Row L, Table 3) 
of the method measures the access time of the 
object, and decides that its hosting site has already 
been accessed if the retrieval takes longer than a 
predefined threshold. In the nonscripted version 
(Row K, Table 3), a dummy file is embedded into 
the attacker’s page, followed by the test object, and 
then another dummy file; then, the access time of 
the test object can be inferred by inspecting the 
timestamps of retrieving the dummy objects in 
the log of the Web server. Both variants have an 
accuracy above 90%, as reported by the authors, 
based on their experiments. It is worth noting that 
the adversary may also use the cache for tracking 
purposes via “cache cookies” (Row M, Table 3).

The DNS-based (Row J, Table 3) attack is 
similar to the previous one, and has the exact same 
variants, but it is the time to execute a DNS 
query to a domain that is measured. Felten & 
Schneider argue that the attack is feasible if the 
cache miss penalty is significant for a specific 
domain name server; in such cases, the accuracy 
is above 90%.

It is uncertain if these attacks are still viable 
with modern computers. For instance, private 
browsing mode makes the browser wipe the 
cache when it terminates, thereby decreasing the 
accuracy of the browser cache-based attack. This 
is no longer a serious penalty for the users with 
high-speed, flat-rate internet access. In addition, 
we argue that the use of the first two attacks as 
a means of tracking a user or profiling her is not 
viable, as both of them are nonrepeatable (at least 
in theory). Cache cookies, on the other hand, may 
be efficient, provided that the cache is not wiped 
very often, but they require an adversary who can 
manipulate the expiry times of cached objects.

It must be noted that cache timing-based attacks 
(Rows N and O, Table 3) seem to be having their 
renaissance (mansour, 2011; Zalewski, 2011). 
These new algorithms work around the problem of 
nonrepeatability by aborting the loading of the ca-
cheable resource after a predefined duration. If the 
object has finished loading during that timeframe, 
it is assumed to have been cached. We have not 
experimented much with these proofs-of-concept, 
but a short test with Microsoft Internet Explorer 
9, Mozilla Firefox 12.0, and Google Chrome 20 
on a moderately powerful laptop concluded that 
these algorithms might not be especially reliable, 
as they produced a large number of false negatives.

Cross-Site Timing-Based Attacks

It is also possible to mount a cross-site timing attack 
(Row P, Table 3) in order to infer history for a site 
where users must log in to access certain content. 
Such methods embed a test page and a reference 
page from a domain into the attacker’s Webpage, 
and compare their loading times through the 
onerror and onload event handlers of JavaScript.

In the settings of Bortz et al. (2007), the refer-
ence page is chosen such that it displays similarly 
for a logged-in user and a guest, while the contents 
of the test page are significantly different between 
these groups. With certain Websites, it may also 
be possible to distinguish a logged-out member of 
the site from non-members through this technique.

Protecting users from cross-site timing attacks 
is not easy. A conceivable server-side counter-
measure is to make each request on a Web server 
execute in a fixed time, while a client-side coun-
termeasure could be to enforce the same-origin 
policy in JavaScript for the onload and onerror 
event handlers.

Classical CSS-Based Attacks

Several attacks rely on CSS, but the automated 
attacks in Janc & Olejnik (2010) are among the 
earliest and simplest ones. They exploit the way 
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browsers handle the CSS pseudoclass of visited 
links–the feature that makes it possible to color 
(or otherwise format) an already visited hyperlink 
differently from one that is absent from the history.

The nonscripted, automated, CSS-based attack 
(Row A, Table 2) uses a style sheet that loads a 
unique background image for a hyperlink if it is 
in the history. When the victim loads the Web 
page, the browser makes a request for each URL 
that corresponds to a visited domain. The scripted 
variant of the attack (Row B, Table 2) uses the 
getComputedStyle function of JavaScript to access 
the style that was actually applied on an HTML 
element; then, the script can directly decide if 
the corresponding domain has been visited. Both 
attacks have been well-described at least since 
2002 (Baron, 2002).

An attacker can also query addresses under 
the domain name of a social networking site (Row 

C, Table 2) with the goal of inferring the actual, 
real-world identity of the user (Wondracek et al., 
2010). In order to pull this off, the adversary must 
have already crawled the social network; then, a 
CSS-based attack can be used to discover if the 
user visited the site of a predefined set of groups 
(i.e., online “clubs” with predefined topics to 
which interested users can subscribe). Assuming 
that a hit in this set equals an actual membership 
in the group, the set of hits can be matched against 
the previously crawled social network data. Ac-
cording to Wondracek et al., 42.06% of the users 
of the Xing social network could be uniquely 
identified by this method.

Privacy-preserving history mining (Jakobsson 
et al., 2008) was proposed to amend the attack 
with privacy-preserving features (Row D, Table 
2), by leaking only predefined categories of vis-
ited Websites, instead of distinct domain names. 

Table 2. Classification of query-based history stealing techniques 

ID Attack Accuracy Speed Technology Counter-measures Harm

A Pure CSS 
(Janc & Olejnik, 2010)

High High CSS Baron’s defenses; pollution; 
personalization; same-
origin caching and styling

Partial history leakage

B Scripted CSS (Janc & Olejnik, 
2010)

High High CSS, JS Baron’s defenses; pollution; 
personalization; same-
origin caching and styling

Partial history leakage

C Social network HS 
(Wondracek et al., 2010)

High High CSS, JS Baron’s defenses; pollution; 
personalization; same-
origin caching and styling

Complete 
identification (with 
real name)

D Privacy-preserving history 
mining (Jacobsson et al., 2008)

Mode-
rate

High CSS, JS opt-out; Baron’s defenses; 
pollution; personalization; 
same-origin caching and 
styling

Coarse-grained 
information leakage 
about browsing habits

E Word CAPTCHA (Weinberg 
et al., 2011)

High Low CSS Unknown Partial history leakage

F Character CAPTCHA 
(Weinberg et al., 2011)

High Low CSS Unknown Partial history leakage

G Pawn task (Weinberg et al., 
2011)

High Low CSS Unknown Partial history leakage

H Jigsaw puzzle (Weinberg et 
al., 2011)

High Low CSS Unknown Partial history leakage

I Webcam attack (Weinberg et 
al., 2011)

Mode-
rate

Low Flash, image 
acquisition and 
processing

Unknown Partial history leakage
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This algorithm is equal to a CSS-based attack, 
with hyperlinks to domains belonging to the same 
category behaving the same way, which makes 
them indistinguishable for the attacker.

Early proposed countermeasures against auto-
mated CSS-based history stealing attacks include 
URL personalization (Jakobsson & Stamm, 2006) 
and history pollution (Jakobsson & Stamm, 2007). 
The first proposition alters all URLs under the 
domain according to a user-specific pseudonym, 
thereby making guessing URLs impossible. The 
second one would insert entries into the history that 
point to sites that are of a similar nature to those 
actually visited by the user–this way, the attacker 
cannot distinguish between fake and real history 
entries. Other authors proposed the extension of 
the same-origin policy to caching and visited link 
differentiation (Jakobsson et al., 2006).

N.b. that these defenses did not make automated 
CSS-based history stealing completely infeasible. 
However, in Firefox 4, the vulnerability was thor-
oughly patched in April, 2010 by making CSS 
behave similarly for visited and unvisited links 
(Baron, 2002), and also by removing certain CSS 
features (Baron, 2010; Stamm, 2010).

Interactive CSS-Based Attacks

Modern browsers inhibit classical CSS-based 
attacks; nonetheless, style sheets can still be ap-
plied to hyperlinks. If the user can be tricked into 
disclosing the applied style of a set of elements, 
history stealing can still be feasible, albeit at a 
lower speed and for fewer URLs (Rows E through 
J, Table 2). Weinberg et al. (2011) detail four 
attacks, all of which are meant to be disguised 
as CAPTCHAs (Completely Automated Public 
Turing test to tell Computers and Humans Apart; 
a puzzle that can easily be solved by a human, 
but is normally difficult for computer software). 
CAPTCHAs normally ask the user to, for example, 
recognize and type some slightly distortedly ren-
dered letters, or to provide the right answer to a 
dynamically generated, simple question, such as 
“How much is 2 + 2?”

The first of the four attacks shows words to 
the user, while the second one displays specially 
constructed characters on seven-segment displays. 
The user is asked to type all words or characters 
into a text field, which completes the attack. The 
first attack infers one visited URL per word, 

Table 3. Classification of timing-based history stealing techniques 

ID Attack Accuracy Speed Technology Counter-measures Harm

J DNS timing (Felten & Schneider, 
2000)

High Moderate DNS (JS) Unknown Partial history leakage

K Naive cache timing (Felten & 
Schneider, 2000)

High Moderate N/A Unknown Partial history leakage

L Scripted naive cache timing 
(Felten & Schneider, 2000)

High Moderate JS Unknown Partial history leakage

M Cache cookie 
(Felten & Schneider, 2000)

High Moderate JS Unknown The cache cookie 
allows tracking of 
the user

N Enhanced cache timing (mansour, 
2011)

Low High JS Unknown Partial history leakage

O Enhanced cache timing (Zalewski, 
2011)

Low High JS Unknown Partial history leakage

P Cross-site timing (Bortz et al., 
2007)

De-pends 
on site

N/A JS Fixed-time requests; 
same-origin onerror 
and onload

Discovery of mem-
bership in an online 
service
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while a character represents four for the second 
attack. The third attack draws a chessboard, and 
maps each square to a URL. Then, a chess piece 
is drawn into the square if the corresponding URL 
is visited; otherwise, the square is empty. The user 
is then asked to click all squares where she sees a 
chess piece. Finally, the fourth interactive attack is 
similar to a jigsaw puzzle: the user must click on 
the pieces of which a composite picture is made 
up. These attacks work, but at a very low URL 
detection speed; therefore, they are less viable 
for general profiling, but may be used in some 
targeted attacks (e.g., in phishing attacks).

Side-Channel CSS-Based Attacks

Miscellaneous methods include the webcam at-
tack (Weinberg et al., 2011), which renders visited 
links with a blinking style, and recognizes this by 
processing images recorded with the user’s Web 
camera (Row I, Table 2). Obtaining permission 
to use the Web camera may be problematic, but 
the required image processing algorithm is not 
very complex (but a simple, homogeneous back-
ground may be required behind the person using 
the computer).

Leaking History Through 
Security Policies

HTTP Strict Transport Security (HSTS) defines 
an HTTP header that forces the browser to initi-
ate a secure HTTPS connection to a Website that 
was originally requested through plain HTTP. The 
browser stores this setting, so that subsequent 
requests are made via HTTPS. Previously we 
mentioned that this functionality can be exploited 
to store an identifier, but also to leak history 
(Davidov, 2011).

For storage purposes, an adversary can “burn 
in” a unique alphanumerical identifier into the 
browser as a set of HSTS policy entries–that 
is, through subdomains under the control of the 
attacker–and query it later on. Upon retrieval, 

the browser will initiate an HTTPS connection 
for the “right” domains only. This mechanism 
can be used similarly to determine visited links 
where such a setting was used. One can think of 
this algorithm as a mixture of a tracking cookie 
and history stealing. However, it is arguably more 
effective than that, since HSTS policy entries 
are meant to stay in the browser for a long time. 
A viable countermeasure would be to enforce a 
single policy for all subdomains.

Summary of History Stealing Attacks

In the empirical study of Jang et al. (2010) over 
the Alexa top 50,000 sites, it was shown that 485 
sites inspected the style properties of elements that 
could leak browser history. Out of these sites, 46 
confirmedly performed the classical, JavaScript-
enhanced, CSS-based history stealing, and then 
transferred the result to some server; 36 of them 
used “off-the-shelf” history stealing code from 
third-party domains. Further 326 sites inspected 
a vast amount of domains, but Jang et al. could 
not confirm that the history information was sent 
to any server.

We have summarized the key features of all 
attacks discussed hitherto in Table 2 and Table 3; 
we have separated query-based and timing-based 
attacks (See our taxonomy) for better clarity. The 
following properties are listed for each attack:

Accuracy: High accuracy means few or zero 
false positives and false negatives; it can be seen 
that most attacks belong to this category. However, 
both the construction and accuracy of cross-site 
timing are highly dependent on the site to be at-
tacked, and therefore a general result cannot be 
given for it. Moreover, privacy-preserving history 
mining is moderately accurate on purpose. The 
webcam attack is, however, moderately accurate 
per se, according to Weinberg et al. (2011). Other 
attacks by the same authors are highly reliable for 
a compliant user. Finally, the result of enhanced 
cache timing is based on our very limited experi-



149

Tracking and Fingerprinting in E-Business

ments; in other setups, the attacks might perform 
better.

Speed. Most variants of classical, CSS-based 
history stealing can query hundreds of thousands 
of URLs per minute, while hundreds may be fea-
sible with cache-based attacks (except the newer, 
enhanced ones). Obviously enough, attacks that 
require user interaction have the lowest speed. 
We have not been able to determine the speed of 
cross-site timing attacks, and we find the two sites 
tested by Bortz et al. too few to draw a conclusion.

Technology: Here we enumerate the technolo-
gies that are used by the attacks. We have not in-
cluded self-evident ones, such as HTTP or TCP/IP.

Countermeasures: Here we enumerate the 
countermeasures that can be used to defeat (or 
at least cripple) an attack. Again, we have not 
included any self-evident methods (such as delet-
ing the browsing history and/or the cache of the 
browser, disabling JavaScript in order to avoid 
JavaScript-based attacks, or covering the Web 
camera in order to defeat webcam attacks), so 
“unknown” does not always imply that the user 
is powerless; then again, many of these counter-
measures do not allow a fine-grained tradeoff 
between browsing experience and privacy, so 
the implementation of better defenses might be 
desirable. By “Baron’s defenses,” we mean all 
countermeasures discussed by Baron (2010), 
and later implemented as a bug fix in (Baron, 
2002), that is, making the style that is applied to 
hyperlinks inaccessible for JavaScript programs, 
modifying the way how CSS styles are applied to 
hyperlinks, and disabling certain CSS features.

Harm: In this column, we list the consequences 
of a successful execution of each attack, i.e., how 
detrimental it is to the privacy of the user.

FINGERPRINTING ON THE WEB

Fingerprinting is an emerging, storageless identi-
fication technique on the Web replacing storage-
based techniques. When the client device is being 

fingerprinted, a reproducible, unique identifier is 
calculated, which can be easily recalculated with 
a high probability during a subsequent visit or 
when visiting another site, even if all client-side 
storages are cleared. Various information can serve 
as a basis of fingerprinting, such as the hardware 
parameters, unique features in network communi-
cation (e.g., the IP address or timing), or software 
settings and capabilities (such as OS brand, list 
of installed plugins, browser agent information). 
Regardless of the considered features, economi-
cally valuable fingerprinting techniques should 
not be sensitive for changes in the attributes taken 
into account during identification.

Although both history stealing and fingerprint-
ing techniques are storageless, we argue that it 
makes sense to differentiate between them, as 
the prior are based on state (browsing history, 
caches, etc.), while the latter are setting- and 
attribute-based. The principal difference is that 
the client state can be influenced by the attacker 
and Websites (this is why client state can be ex-
ploited to operate as a storage, e.g., in the case of 
operational caches), but attributes and settings can 
only be changed by the user. This classification is 
further refined in a subsequent section.

Probably the earliest fingerprinting attempt 
used for identification was mentioned in the thesis 
of Mayer (2009), and the Panopticlick project 
(Eckersley, 2010) was the first empirical experi-
ment on a large user base. There are even more 
earlier fingerprinting attempts like the passive OS 
fingerprinting of Miller (2002), or tools such as 
the browser identification tool, the Browserrecon 
(Ruef, 2008), which used HTTP request headers 
for identification; however, these rather focused 
on revealing real device and software attributes 
(i.e., discovering the OS type and the user agent 
string, respectively (also called OS and application 
fingerprinting)), instead of measuring uniqueness 
and large-scale identifiability. Although these are 
not applicable for tracking, they can be used for 
detecting client attributes, as an additional source 
for another type of fingerprinting.
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Shortly after the Panopticlick project was 
published, companies started to switch from 
cookie-based to fingerprinting tracking techniques 
(Marshall, 2011), since fingerprinting works even 
in the case of privacy-conscious users who delete 
cookies regularly and use private mode, as in both 
cases, these efforts are useless against fingerprint-
ing (Boda et Al., 2012). Although we must note 
that some companies, such as 41st Parameter, 
had used fingerprinting even before the thorough 
academic analysis began (Eckersley, 2010). In ad-
dition, the EU regulation on tracking cookies–often 
referred to as the “cookie law”–merely added fuel 
to the fire, since it prohibited the use of all kinds 
of storages for tracking unless the user consented 
(Loveless, 2011), and inspired advertisers to seek 
ways of circumvention.

Nowadays, several companies offer finger-
printing based behavioral tracking such as Blue-
Cava Inc., Iovation Inc., 41st Parameter, claiming 
to provide device identification applicable to all 
kinds of devices; however, some trackers use 
fingerprinting only as a complementary solution 
to regular techniques, as is the case of TradeDou-
bler, where the device fingerprint is calculated as 
a hash of the user agent string and the IP address, 
and then used to track ad clicks (Wramner, 2011).

In this section, we review fingerprinting tech-
niques, the related anonymity paradox (i.e., when 
forged information makes the subject even more 
outstanding from the crowd than as without), 
and possible defenses from the literature. We 
rigorously focus on technology-based solutions; 
however, there is another type of fingerprinting that 
may be incorporated into business practices in the 
future: biometry-based fingerprinting. There is sci-
entific evidence that real-life behavior and human-
computer interaction can be used for biometrical 
identification (Yampolskiy & Govindaraju, 2008), 
and it has already been shown that typing patterns 
are also personally identifying (Chairunnanda et 
al., 2011), even mouse movement fingerprinting 
(Feher et al., 2012). We believe that, in the near 

future, similar techniques, with a wider-scale use 
will emerge on the market of tracking.

Information-Based 
Fingerprinting Techniques

Information-based fingerprinting techniques 
query and collect high-level client attributes (read 
values of variables, constants, or measure certain 
characteristics) and settings for fingerprinting 
(e.g., from the OS or the browser). Here we review 
the most relevant information-based fingerprint-
ing techniques, and the related countermeasures.

One of the earliest fingerprinting techniques, 
Browserrecon, targeted the family and version of 
the browser agent. Browserrecon regarded the user 
agent string to be fake, and instead it inspected the 
sent HTTP headers, as the header lines and their 
values differ for each browser family, sometimes 
even between versions, too. Norbert (2011) con-
firms this for Firefox, and in addition mentions 
a method of distinguishing Firefox from other 
browsers, as it is the only browser that makes a 
second request for the favicon if it is not found 
for the first time.

Occasionally, particular (or even identifying) 
information is sent through the headers. For ex-
ample, an installation of Microsoft Office causes 
changes to the Internet Explorer HTTP accept 
headers (Wramner, 2011); or as another example, 
some mobile ISPs intentionally leak private infor-
mation (such as mobile phone numbers, roaming 
status) of their subscribers through the request 
headers (Mulliner, 2010). However, headers need 
to be augmented with additional information for 
effective, wide-scale fingerprinting, in order for 
them to be suitable for tracking. In their work, 
Yen et al. (2012) analyzed millions of hosts who 
visited the Hotmail and the Bing search services, 
and concluded that 80% of users can be tracked 
by simply using the user agent strings augmented 
with IP prefix information as an identifier.

The thesis of Mayer (2009) was the first step 
towards classic information-based fingerprinting. 
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In his experiment, a test site was run, where the 
navigator object, screen resolution, list of plugins, 
and acceptable MIME types were hashed together 
for creating the browser fingerprint. Although 
only 1,328 clients were measured, this experi-
ment showed the potential in fingerprinting, as 
unique fingerprints were obtained in 96.23% of 
all cases. It also turned out that, when plugin and 
MIME type lists are provided from Mozilla- and 
WebKit-based browsers, they provide additional 
entropy for fingerprinting. Eckersley showed that 
this is true for Flash- and Java-based font detection 
(Eckersley, 2010).

Making use of the underlying principles, the 
Panopticlick project was designed to test the 
uniqueness of browser fingerprints on a larger 
scale (i.e., to determine the commercial viability 
of such fingerprinting methods (Eckersley, 2010)). 
During the experiment, the uniqueness of differ-
ent attributes such as the user agent string, screen 
resolution, font and plugin lists were measured, 
and self-information of combined attributes were 
also measured–but not the joint entropy of cor-
relating attributes, as Perry et al. notice (2011). 
Until the beginning of the analysis, the project 
had gathered 286,777 fingerprints, from which 
94.2% were unique if plugins were enabled (and 
only a further 4.8% had anonymity sets at least 
of two users), and Eckersley provided a simple 
but precise algorithm that can follow changes in 
fingerprints (i.e., due to browser or plugin updates) 
with an accuracy of 99.1%.

The Panopticlick project inspired the idea of 
cross-browser fingerprinting (Boda et Al., 2012), 
where two major improvements were made. 
Panopticlick used attributes that were browser-
dependent (e.g., the user agent string), and it 
was also plugin-dependent, since precise results 
were provided only by using either Flash or Java 
to collect font lists (which is a rather important 
source of entropy). Although Eckersley (2010) 
mentioned CSS-based font enumeration, the work 
of Boda et al. (2012) is the first known attempt to 

implement JavaScript and CSS-based font detec-
tion for fingerprinting.

Moreover, the list of queried fonts was chosen as 
the basis of identification, based on the following 
assumption: as the list of installed software on a 
computer is unique, and so is the list of available 
fonts, since new applications can silently install 
fonts, too. Therefore, fingerprints were hashed 
from the first two octets of the IP address, the 
screen resolution, the time zone, and some se-
lected fonts–where all attributes were browser-
independent (See Figure 4). The font feature 
set was created in a way to eliminate values of 
uncertain and browser-dependent fonts, as some 
fonts behave differently in different browsers.

In a 6-month period of collection, a total of 
989 fingerprints were obtained, on which it was 
shown that JavaScript-based font detection was 
sufficient for unique identification (at least for 
Windows and MacOS systems); however, due to 
the low number of fingerprints created in multiple 
browsers in parallel, the cross-browser property 
has remained a mere concept. This inspired the 
Cross-browser fingerprinting test 2.0 (2012), as 
an attempt to prove the viability of such tracking. 
The basic concepts remained the same, but there 
were some changes: the font feature list was refined 
(based on lessons learned from the first test), the 
first two IP octets were omitted, and an ever-
cookie was optionally set to support future 
analysis (for which some additional info is also 
collected but not included in the fingerprint, such 
as the list of plugins).

There are several other fingerprinting ex-
periments similar to Panopticlick and the cross-
browser fingerprinting test, but we chose to omit 
them, as we deemed that they did not deliver 
groundbreaking novelties; however, there are 
fundamentally different ones that are worth 
mentioning. Whitelist fingerprinting (Mowery 
et al., 2011) is an attack against Firefox with the 
NoScript extension installed. NoScript allows 
users to completely block JavaScript, unless the 
site in question is included on a whitelist. The 
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rationale behind the algorithm is that the user is 
likely to whitelist sites of her interest that would not 
work with blocked JavaScript. The attack embeds 
a JavaScript program into a Web page and checks 
for hallmarks of a successful execution. For a large 
set of domains, the pattern of “whitelist hits” may 
be enough to fingerprint a user, but the efficiency 
of this fingerprinting scheme on a large user base 
is not known. Another problem of the attack is its 
small-scale usability.

Reschl et al. (2011) discuss a fingerprinting 
method that aims to discover the version of the 
browser through examining the behavior of the 
JavaScript implementation. Globally-available 
JavaScript test suites are used to discover the exact 
browser version. In a survey with 189 participants, 
the test suite ran in 90ms on an average PC, and 
200ms on a smartphone, and identified supported 

browser versions with an accuracy of 100%–this 
claim was verified by inspecting the UAS of the 
browser and by asking the user about the exact 
version of the browser. Arguably, this information 
alone is little for unique identification, but may be 
used as an additional source in tracking methods. 
Norbert (2011) proposes to use somewhat rarely-
used JavaScript calls like arguments.callee().
toString() to discover subtle differences between 
the JavaScript implementations of browsers.

Mowery et al. (2011) constructed another 
browser and OS fingerprinting algorithm, but 
based it on off-the-shelf JavaScript test scripts 
(i.e., benchmarks). The accuracy of guessing 
the browser family was 98.2%, and guessing the 
correct browser version was successful in 79.8% 
of all cases. The operating system fingerprinting 
was performed within a chosen browser version, 

Figure 4. Single vs. cross-browser fingerprint: values need to be filtered to obtain system- and not-
browser-specific information as an input for the fingerprint
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namely Firefox 3.6. Versions of Windows (7, 
Vista, and XP) could be distinguished with an 
accuracy of 98.5% (due to the lack of volunteers 
other systems were not measured).

Hardware and Network Level 
Fingerprinting Techniques

Besides browser and OS fingerprinting, Mowery 
et al. (2011) also discussed a CPU architecture 
fingerprinting algorithm that had a success rate 
of 45.3%. This is not very precise, and has an as 
long runtime as their OS and browser fingerprint-
ing technique. That said, hardware fingerprinting 
is also possible by looking for minor differences 
between images rendered by different hardware 
(Mowery & Shacham, 2012) onto the <canvas> 
element of the HTML5 standard. Furthermore, 
versions of Safari return some quite detailed 
information about the Graphics Processing Unit 
(GPU) and the version of the rendering engine, 
which can further enhance a comprehensive 
fingerprint. Mowery & Shacham describe four 
different canvas-based algorithms. According to 
their empirical analysis on a sample of 300 volun-
teers, their test algorithms produced 116 groups, 
resulting in a distribution entropy of 5.73 bits.

In our opinion, this is quite formidable (albeit 
insufficient for creating unique identifiers per se), 
especially when combined with other fingerprints 
such as Panopticlick or the cross-browser test, and 
even more so if we consider that it runs in the frac-
tion of a second, completely invisibly to the user, 
and how hard it is to implement countermeasures 
without imposing significant restrictions (e.g., 
completely disabling WebGL, adding noise to the 
rendered image, or rendering in software through 
a standardized graphics library) on the capabilities 
of the browser. Mowery & Shacham envision a 
pop-up window to ask for permission to retrieve 
pixel data as an effective defense, which may be 
viable, but it is uncertain how users would react 
to yet another permission dialog box.

Kohno et al. (2005) experimented with fin-
gerprinting computers based on the clock skews 
they exhibit. Skew of two clocks is defined as 
the difference between the rates with which they 
advance. Two attacker models are discussed: one 
where the clock skew is calculated for TCP time-
stamps, and one where the attacker bombards the 
fingerprinted computer with ICMP Timestamp 
Requests, and estimates the skew of the system 
clock based on the values in the incoming ICMP 
Timestamp Replies. According to Kohno et al., 
the TCP timestamp-based fingerprint remains 
stable even if the attacked computer frequently 
synchronizes its system clock with a Network 
Time Protocol (NTP) time server. Furthermore, 
both methods yield similar results if the system 
clock is not synchronized with such a time server, 
as was found to be the default with many operating 
systems from 2005.

Kohno et al. conducted their experiments on 
traffic metadata obtained from an American Tier 1 
ISP, and data obtained from tests with a computer 
laboratory with identically provisioned computers. 
Based on the first data set, the entropy of TCP 
timestamp-based clock skew fingerprinting was 
shown to range from 4.87 bits to 6.41 bits. The 
analysis of the second data set showed that such 
clock skews became stable shortly after bootup. 
Moreover, by testing their fingerprinting algo-
rithm on the same laptop at different geographical 
locations and network access media, it was also 
proven that the clock skew estimate is oblivious 
to these factors.

Huang et al. (2012) discuss another clock skew-
based device fingerprinting method with the aim 
of being an additional security layer for the login 
process of a cloud-based service (i.e., to recognize 
if a “usual” client is attempting to sign in to an 
account). The skew of the clock of a connecting 
client with respect to a server-side reference clock 
is measured by triggering an AJAX (Asynchronous 
JavaScript And XML) request every 5 seconds, and 
then the clock skew is estimated through statistical 
methods. According to their measurements, the 
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so-estimated clock skew is largely independent 
from the network medium, and the only notable 
exception is the use of a virtual machine, which 
produces a different–but stable–clock skew upon 
every reboot. Furthermore, Huang et al. conducted 
an experiment with 100 devices, and found that 
the false negative and false positive rates are at 
most 8%.

However, we would like to highlight that the 
applicability of the algorithm for its original 
purpose of enhancing authentication is somewhat 
questionable, as at least 200 AJAX requests are 
required to get a meaningfully precise clock skew 
estimate, which takes 16.7 minutes. We argue, 
however, that the algorithm can successfully and 
clandestinely fingerprint a user if the attacker’s 
Web page is kept open for a long time (e.g., when 
reading a news site or taking a coffee break, but 
not when logging in to a webmail service).

Yen et al. (2009) try to identify browser fami-
lies based on other types of summarized traffic 
metadata of information flows. They examine 
9 features of TCP connections (e.g., their byte 
count and duration). Firstly, the authors tested 
their classification method based on a data set 
comprising traffic from Windows-based hosts. The 
algorithm was tested by data originating from a 
single browser instance, and trained by the rest of 
the data set. It was found that the correct browser 
family could be identified with a precision of at 
least 71%, but even 100% was achievable after 
slight adjustments to the parameters. Then, the 
algorithm was also tested in a real-world-like 
scenario, where the precision of classifying Firefox 
and Opera browsers was calculated for several 
parameters, and it peaked at 74.56%.

In our opinion, this algorithm can probably be 
extended to several browser families (and possibly 
versions), as implied by the authors. However, 
requiring the summary of a vast amount of data 
imposes a lower bound on the capabilities of the 
attacker. As far as the possible countermeasures 
are concerned, it might be possible to make the 
browser “randomize” its traffic characteristics 

(e.g., varying the number of resources that are 
fetched in one go), but that could possibly introduce 
inconsistencies into the user experience.

The Anonymity Paradox: Use 
Camouflage with Wisdom

Before discussing defenses against fingerprinting, 
we should mention the anonymity paradox (i.e., 
when one’s efforts result in even stronger identifi-
ability instead of preserving her privacy). Let us 
imagine that, as a means of protection, someone 
changes the user agent string of the browser to an 
empty string. This clearly preserves some privacy 
as it prevents information loss, but it is also likely 
that it uniquely identifies her (and makes her 
traceable), since such user agent strings are not 
very common. This is like putting on a ski mask 
in a bank; if you are the only one doing this, you 
are anonymous, but also in focus (and very likely 
to be caught). See Figure 5 for a fingerprinting-
related example.

Eckersley (2010) brings up Privoxy users as 
examples, whose user agent strings had 15.5 bits 
of identifying information alone. Similarly, brows-
ing the Web with Tor can also be a marker for 
fingerprinting, according to the measurements of 
Hubner et al. (2010), who found that only 22% of 
Tor users used TorButton to browse the Web. 
Perry et al. (2011) go even further and state that 
every single altered option can be used for fin-
gerprinting; for example, user customized filters 
can be suitable targets, just as in the case of 
whitelist fingerprinting.

In connection to fingerprinting, such and 
similar phenomena–that is, when client state is 
altered in order to protect privacy, but due to the 
low user base doing the same it achieves identifica-
tion rather than anonymity–are referred to in the 
literature as the Panopticlick or the fingerprinting 
paradox (The Simple Computer, 2012; Broenik, 
2012) and also discussed in Eckersley (2010) and 
Perry et al. (2011). However, this concept can be 
generalized beyond fingerprinting, and can occur 
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in other scenarios while using privacy enhancing 
technologies (PETs), thus we call it the anonym-
ity paradox.

Therefore, substitution values must be chosen 
carefully, or should be used by a sufficient num-
ber of people. Attributes should blend the device 
into the mass of others to achieve anonymity, and 
multiple attributes regarded together should be 
chosen carefully. As an example of the latter, an 
iOS Safari user agent string coupled with a reso-
lution of 1280x1024 do not sound very realistic, 
and provides a good source of information for 
identification, too. In addition, one should consider 
the possibility of session linkability, and should 
not change values randomly too often (e.g., at 
every page load).

Defending Against 
Fingerprinting Attacks

One needs to consider many aspects in order to 
achieve unobservability of her actions against 
fingerprinting attacks; first of all, as a starting 
point it is presumed that no regular attacks will 
work against her (including IP-based tracking). 
Therefore, for the sake of simplicity (from the 
user’s viewpoint), we propose the use of off-the-

shelf solutions created by professionals, such as 
Tor Browser Bundle (Tor, 2012), or JonDoFox 
with JonDo Proxy (JonDo, 2012), as both provide 
network-level anonymization, and also protection 
against most regular tracking techniques and 
privacy-violating attacks. In addition, develop-
ers of both seek solutions to avoid fingerprinting 
attacks, too.

Particularly suspicious users may use static 
virtual machine snapshots (burnt to a DVD or 
reverted regularly) to protect their system against 
tracking (The Simple Computer, 2012), which 
also provides some protection against clock skew 
attacks as described previously, but, of course, this 
requires a sacrifice of some comfort. However, we 
note that in case of bad configuration, such systems 
provide a static fingerprint for tracking their user.

Customizing the Browser

For some reason, there are users who do not want 
to use complex solutions as previously discussed, 
but to build their own compilations instead (e.g., 
to add PETs as extensions to the Web browsing 
applications they use every day). There are many 
browser and system parameters to cover (e.g., time 
zone, user agent string, language and character 

Figure 5. The anonymity paradox illustrated: camouflaging is not enough, as anonymity set size also 
matters. There are three visitors who were using a counter fingerprinting technology, masking them-
selves as Firefox 15 users. However, one of the visitors used unusual camouflage settings which made 
her identifiable and trackable, but the others had an anonymity set size of 2.
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set settings, accepted content types, headers), and 
there are some which cannot be masked without 
serious investigation and cumbersome hacking. 
For instance, information related to screen and 
content window resolutions need to be reduced, 
as alone this option is estimated to leak 29 bits of 
identifying information (Perry, 2011b), but a list 
of “talkative” attributes may be further convincing 
(e.g., JonDo Test, 2012).

In conclusion, in our opinion, building a custom 
software package seems futile, as a complete solu-
tion requires building an anonymous Web browser 
(Gulyás et al., 2008) with several extensions and 
modifications. We agree with Perry et al. (2011), 
who stated that “each option that detectably alters 
browser behavior can be used as a fingerprinting 
tool,” and we just highlight whitelist fingerprint-
ing again (Mowery et al., 2011) as an example.

Protection against JavaScript 
Engine Fingerprinting

Unfortunately, none of the discussed JavaScript-
based fingerprinting algorithms are trivial to pro-
tect against (Norbert, 2011; Reschl et al., 2011). 
However, some attacks seem less threatening–even 
if we take the lack of effective countermeasures 
into consideration–as they are not feasible to be 
used in real-life situations. As a drawback of the 
fingerprinting suite of Mowery et al. (2011), its 
runtime of several minutes seems to be prohibi-
tive, bar for Web pages that are normally left open 
for a long time (e.g., news sites). Mowery et al. 
argue that it might be possible to reduce the delay 
between the individual test scripts, which would 
result in a more universally usable algorithm.

We argue that functional aspects–such as 
which JavaScript test cases fail or execute in a 
certain timeframe–will always reveal the subtle 
differences between browser families and even-
tually–as bugs get fixed and JavaScript engines 
evolve–versions within a family, too. This is 
inevitable, unless all browsers include the exact 
same JavaScript interpreter; however, this would 

probably seriously impede competition between 
browser vendors and innovation.

One way of avoiding fingerprinting based on 
the characteristics of the JavaScript engine would 
be to allow the user to choose the implementa-
tion at will (e.g., with a browser extension). Of 
course, this is hardly viable between different 
browser families, and outright impossible for 
engines of closed-source browsers. Furthermore, 
this approach would possibly expose the user to 
security vulnerabilities of certain old JavaScript 
interpreters, or break the functionality of some 
Web pages that are optimized for a certain ver-
sion of an engine.

Recent Developments on 
Protecting the Font List

The entropy of the font list was found to be 13.9 
bits in the Panopticlick experiment, having the 
second highest value of all inspected attributes 
(Eckersley, 2010). Due to this finding, and the fact 
that fonts can be detected in multiple ways (via 
Flash, Java or JavaScript), fonts are likely to play 
an important role in fingerprint-based tracking. 
In addition, fonts also significantly influence the 
user experience of Web browsing, and therefore it 
is not possible to restrict the browser to a handful 
of fonts (or at least such a modification will not 
be accepted by the majority of users).

Firefox offers a simple option to restrict all 
possible fonts to a selection of four (i.e., Content 
> Fonts & Colors > Advanced > Allow pages 
to choose their own fonts), which also helps in 
impeding font-based fingerprinting, but it is not 
a very user experience-friendly solution. There-
fore, it seems most likely that Firefox will apply a 
patch to this solution (Viecco, 2012), which was 
developed for the Tor browser (Perry, 2011a).

The latter includes two novel options, namely 
the browser.display.max_font_count and browser.
display.max_font_attempts to limit the number of 
fonts, and font load attempts, regulated on a per 
page load basis (currently, test values are set as 5, 
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10 respectively). This method limits JavaScript-
based detection only; therefore, affected plugins 
need to be disabled.

For the problem of session linkability, we 
suggest further modifications, as an attacker can 
test different fonts during sequential page loads. 
It is not likely that font lists collected this way 
would have a high entropy (at least for tracking 
only by font lists), but they can be regarded as a 
significant additional entropy source. Therefore, 
we propose to use these options in a per-domain 
setting, with a user interface for necessary in-
teraction (e.g., clearing the cache of previously 
loaded fonts), which would not allow loading 
new fonts if the user navigates to a new page on 
the same domain.

The FireGloves add-on is a proof-of-concept 
utility (i.e., not a standalone extension providing 
enhanced privacy) aiming to show a compromise 
between good user experience and fingerprintabil-
ity, thus it chooses a different approach to disable 
font-based fingerprintability–namely rewriting 
the offsetWidth and offsetHeight getters in order 
to prohibit JavaScript font detection (FireGloves, 
2012). Although it has problems on some pages, it 
offers a usable alternative; however, the solution of 
the Tor Browser with a per-domain setting would 
admittedly embody a better solution.

Defending Low-Level 
Fingerprinting Attacks

Protecting users against the threats of these 
fingerprinting attacks is hard. Hardware-based 
techniques such as font rendering-based finger-
printing can hardly be defeated from a browser, 
as the fingerprintable information is provided by 
low-level software, such as the driver of a GPU, 
or a layer of the operating system. Clock skew is 
another example of a system feature that is out 
of the reach of the browser. Of course, certain 
features of the browser (such as the number of 
objects that are fetched in a single TCP session, 
or the content of HTTP request headers) can be 

manipulated, but it might impose some–possibly 
hard-to-predict–changes on user experience.

Taxonomy for Storageless 
Tracking Techniques

To the best of our knowledge, this is the first 
taxonomy provided for storageless tracking tech-
niques. More precisely, we classify techniques 
using a single type of source at once; however, 
techniques using multiple sources may emerge 
in the future (e.g., hardware-level fingerprinting 
with browser functionality). Basically, there 
are three types of sources to take into account: 
state information (e.g., caches), attributes (e.g., 
screen resolution, font list, functionality test-
ing) and settings (e.g., cookies enabled or not, 
whitelists).

In our taxonomy (depicted on Figure 6), first 
we differentiate history stealing from fingerprint-
ing techniques by the fact that they are strictly 
state-based: history stealing attacks aim to extract 
state information from the client (i.e., from the 
user’s device or software (browser, OS, etc.)). As 
the state of the client changes during browsing 
the Web, it can also be altered by the attacker in 
order to exploit it as a storage (e.g., HSTS cache). 
This is the same reason why it is not used for 
fingerprinting, as it can change frequently. At-
tacks discussed under history stealing can also 
be additionally categorized either query-based 
or timing-based attacks.

We furthermore divide fingerprinting into 
low-level and information-based fingerprinting 
subclasses. Exactly as discussed in this chap-
ter, low-level fingerprinting sources incorpo-
rate hardware- and network-level fingerprint-
ing techniques, and the rest of the tracking 
techniques constitute the group of information-
based fingerprinting methods. In addition, we 
distinguish single-browser and cross-browser 
fingerprinting techniques and classify dis-
cussed procedures as on Figure 6. As an alter-
native, it is possible to distinguish information-
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Figure 6. Taxonomy of the storageless tracking techniques
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based fingerprinting techniques as passive or 
active, based on whether they query client-side 
information (via JavaScript), or solely use 
information automatically revealed by the 
browser (Broenik, 2011; Mayer & Mitchell, 
2012). In our opinion, browser-dependency is 
rather important that this attribute, and there-
fore we defined our taxonomy accordingly.

CONCLUSION: IS THERE ROOM 
FOR COOKIELESS TRACKING?

As we highlighted in the chapter discussing the 
current state of the advertising and tracking 
business, it is entirely clear that the industry 
will not abandon tracking in response to user 
countermeasures, but rather switch between 
technologies to bypass self-helping attempts 
of privacy-conscious users and also to avoid 
related regulations. Users are not as aware of 
fingerprinting technologies as cookie- and other 
storage-based techniques, and, consequently, 
this favors fingerprint tracking. There are even 
tracker companies who advertise their service as 
a solution for companies affected by the “cookie 
law” in the EU (BlueCava, 2012). Therefore, we 
expect that trackers will favor fingerprint-based 
tracking against other techniques.

However, going forward, regulation will hit 
fingerprint-related tracking, too (at least in the 
EU), but the industry will no doubt find a way 
to circumvent these regulations. For instance, it 
is not possible to forbid sites to query browser 
attributes entirely, since some are necessary 
for everyday operation. Even if these attributes 
are left out from the fingerprint measurements 
either because of regulation or technical barri-
ers, passive fingerprinting can still be used for 
tracking. Therefore, we conclude that–regard-
ing the current scenario–it is most likely that 
fingerprinting will spread among trackers, and 
in places having behavioral advertising and 

tracking regulations in effect, a longer battle 
will take place.

In the last few years, a kind of a cat-and-
mouse game has taken place in the area of 
tracking techniques, especially remarkably 
for storage-based ones. When a novel tracking 
technique was discovered, in some time (after 
a sufficient rise in user awareness) a related 
protective solution arrived, which was shortly 
followed by a new identification method. This 
cycle seems to repeat endlessly, over and over. 
Fortunately, history stealing seems to have been 
defeated; due to strong industrial intervention, 
it is very unlikely for new, widely adoptable 
and effective techniques to emerge. Neverthe-
less, for fingerprinting techniques, the match 
has just begun.

This process indicates where research is 
needed for enhancing user privacy. As the tar-
get of tracking shifted from the browser to the 
device, we expect a similar shift to biometric 
fingerprinting (i.e., tracking the person herself 
across multiple browsers, OSes, and devices). 
Although fingerprinting countermeasures are 
far from being perfect (or widespread), and 
complex protective methods are yet examined 
by the community (e.g., protecting both against 
font-based cross-browser fingerprinting and 
clock-skew measurement), we believe it is time 
for researchers to start thinking about how to 
cover biometric information sources.
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KEY TERMS AND DEFINITIONS

Anonymity Paradox: The problem of in-
creasing identifiability when concealing (private) 
information. In other words, a user is likely to end 
up in a rather small anonymity set if the substitute 
(fake) information is not chosen carefully.

Behavioral Tracking and Advertising: A way 
of observing and analyzing the user’s interaction 
with one or more Websites, rather than simply 
registering Webpage downloads. The collected 
information may include the contents of the clip-
board, mouse heatmaps, keystrokes, scroll reach, 
and so forth, which is later used for behavioral 

advertising (i.e., when advertisements are tailored 
to predicted user behavior).

Fingerprint: Set of attributes or settings that 
is uniquely identifying for a selected entity within 
a set of others (e.g., browser/device of a visitor 
among other visitors).

History Stealing: Also referred to as history 
leakage, history detection or history sniffing, his-
tory stealing is a way of extracting a part of the 
history of the browser (or other state-descriptive 
information) without the consent of the user. 
Such an attack normally cannot acquire the entire 
browsing history; the adversary must choose a set 
of addresses to check before delivering the attack.

Identification, Tracking, and Profiling: In 
the context of the Web, these terms refer to the act 
of a website uniquely identifying visitors, tracking 
theirs actions in order to create profiles on them. 
These profiles are later monetized; for example, 
by showing advertisements tailored for the profile, 
and therefore to the preferences of the visitor.

Implicit and Explicit Data: Explicit data 
refers to some piece of information communicated 
by the client (e.g., user agent string) or published 
on the Web, while implicit data refers to informa-
tion that can be extrapolated from the actions, 
behavior, status, attributes, and so forth, of the 
client or from other explicit data.

Storage-Based Tracking: Regular tracking 
techniques store an identifier on the client (e.g., 
as browser cookies) in order to be able to identify 
returning visitors and monitor their activities.

ENDNOTES

1  http://www.clicktale.com
2  Also called Web beacons, clear GIFs, 1x1 

GIFs, tracking pixels, pixel tags or simply 
pixels.

3  Firesheep raised awareness on Facebook ses-
sion cookies transmitted without protection: 
http://codebutler.github.com/firesheep/

4  Stealing Gmail session cookies via ac-
tive sidejacking: http://seclists.org/bug-
traq/2007/Aug/70


